Skip to main content

Table 2 Filter coefficients for the proposed LS design in Example 3.

From: A New Method for Least-Squares and Minimax Group-Delay Error Design of Allpass Variable Fractional-Delay Digital Filters

  m
n 1 2 3 4 5
1 −0.995911478379215 0.003037237182070 0.000674977600074 0.002203931411874 −0.001547094931521
2 0.491860988660958 0.489906840770088 −0.004126440722118 −0.004968604465653 −0.000451455145871
3 −0.321238701261896 −0.480959682281854 −0.155527315538002 0.009336078160601 0.002875779605052
4 0.234086131719820 0.429265271544100 0.228966726293102 0.025840785057596 −0.005934120518170
5 −0.180442437563948 −0.376964115092541 −0.258474768641364 −0.058885621354534 0.001432724569099
6 0.143669792117880 0.329957770218435 0.265616427088872 0.083096234713679 0.005227747340939
7 −0.116657162172812 −0.288508807455575 −0.260564239814727 −0.098781179155452 −0.011492189916140
8 0.095861039125088 0.251939854553747 0.248549917352264 0.107475439484688 0.016441996382781
9 −0.079319256800620 −0.219538064590932 −0.232515100469996 −0.110719224055686 −0.019869040384123
10 0.065857103009291 0.190720077751894 0.214249655962206 0.109824100478193 0.021858526125015
11 −0.054726435065962 −0.165033191450544 −0.194914864048044 −0.105865858472555 −0.022611233785938
12 0.045425714251763 0.142128041436134 0.175304729171998 0.099719296033186 0.022361719532284
13 −0.037603022298150 −0.121728204225754 −0.155979945905486 −0.092096431614038 −0.021344479562458
14 0.031001228444685 0.103608784007633 0.137345198030118 0.083574882334005 0.019774852983403
15 −0.025425012312619 −0.087578010616568 −0.119690472293712 −0.074621308011672 −0.017844113508204
16 0.020720915083929 0.073467158589459 0.103220353275063 0.065607022593667 0.015713946630399
17 −0.016764317587889 −0.061120833690438 −0.088069015325893 −0.056822176308913 −0.013518649356740
18 0.013451438220377 0.050393631010479 0.074315411373739 0.048485405849704 0.011363357432515
19 −0.010693672377723 −0.041145191376987 −0.061990029855892 −0.040754079903763 −0.009328571849153
20 0.008414281412575 0.033240476434287 0.051085766424762 0.033731771771784 0.007469846563140
21 −0.006545751741101 −0.026547275109895 −0.041561893474693 −0.027476917314175 −0.005823266602704
22 0.005028471552094 0.020938283213411 0.033353508964552 0.022009510808459 0.004405809839568
23 −0.003809384590832 −0.016289718620921 −0.026374265528517 −0.017318832133697 −0.003221101051906
24 0.002841516201697 0.012484128343807 0.020525052306191 0.013369584615560 0.002259936792143
25 −0.002083164017217 −0.009409316711960 −0.015695742339824 −0.010108579318228 −0.001505805273695
26 0.001497755497971 0.006961232471637 0.011773041636065 0.007470070929259 0.000935170532813
27 −0.001053228383405 −0.005042751228794 −0.008641133167121 −0.005381083473594 −0.000522366521324
28 0.000721982433284 0.003566279107085 0.006188479311859 0.003765621798479 0.000239360156968
29 −0.000480297868477 −0.002452163386710 −0.004307224739879 −0.002548399099865 −0.000059778977985
30 0.000308285023293 0.001630854379561 0.002898818696283 0.001657749575799 −0.000041970396936
31 −0.000189289826257 −0.001040887457275 −0.001872166300857 −0.001027714173915 0.000087596983292
32 0.000109818709357 0.000630593764138 0.001148101727283 0.000599713352933 −0.000096409825026
33 −0.000058932273691 −0.000355717936032 −0.000656467669958 −0.000323254739076 0.000082969883834
34 0.000028159894437 0.000180788324236 0.000339826063819 0.000157105923634 −0.000058660087578
35 −0.000010912672360 −0.000076734250069 −0.000151603214037 −0.000073350022415 0.000026749510599