Skip to main content

Table 3 Filter coefficients for the proposed minimax design in Example 3.

From: A New Method for Least-Squares and Minimax Group-Delay Error Design of Allpass Variable Fractional-Delay Digital Filters

  m
n 1 2 3 4 5
1 −0.995993596236449 0.002951361938129 0.000056522430938 0.003227364563976 −0.002459241277563
2 0.492019060719535 0.490165494401252 −0.002681420024658 −0.006345896805414 −0.000444700949259
3 −0.321471225422751 −0.481418973949900 −0.157782729637916 0.010673985821541 0.003558502797986
4 0.234388948779710 0.429936634960839 0.232014003186862 0.024803935644968 −0.007082100578430
5 −0.180809553898889 −0.377848777076039 −0.262282154813875 −0.058330113715328 0.002858896290434
6 0.144093799282764 0.331049886098540 0.270138023365234 0.083140840476517 0.003671971963968
7 −0.117129820320514 −0.289799197810240 −0.265745946995025 −0.099497954673552 −0.009920842069164
8 0.096372854062878 0.253409909828576 0.254315329105907 0.108894154915106 0.014947469673871
9 −0.079860248869537 −0.221163954074996 −0.238774548835977 −0.112836471202399 −0.018523661245126
10 0.066417235371802 0.192475127776987 0.220905131511245 0.112605063283127 0.020710959749977
11 −0.055295700680418 −0.166886921064048 −0.201858125775743 −0.109247481340844 −0.021690925658959
12 0.045994562958711 0.144048641408887 0.182424468016734 0.103618709513285 0.021681689765273
13 −0.038162626126081 −0.123683810542076 −0.163165397984585 −0.096416215678346 −0.020903696245568
14 0.031543613480551 0.105568113889007 0.144488637747372 0.088206732231356 0.019558989262805
15 −0.025943254665904 −0.089511445430816 −0.126690976298732 −0.079454047897343 −0.017831187066804
16 0.021209234821121 0.075347332574665 0.109985232980534 0.070527891068195 0.015873812332757
17 −0.017218205011616 −0.062923918561836 −0.094518367293347 −0.061725532030323 −0.013818324456679
18 0.013867583703075 0.052099069080072 0.080381481983181 0.053273169499334 0.011767529430927
19 −0.011069999914064 −0.042736331042533 −0.067618950223505 −0.045340098661654 −0.009802870961721
20 0.008749913929641 0.034705233910870 0.056239697296178 0.038045151627557 0.007982131561675
21 −0.006840717660722 −0.027876032814163 −0.046213102316074 −0.031459203715713 −0.006345583922439
22 0.005284001340328 0.022127902740351 0.037494541869108 0.025622074058447 0.004913569954169
23 −0.004027273226697 −0.017338667620351 −0.030005448553794 −0.020536165254725 −0.003696194040458
24 0.003024238308363 0.013394444480610 0.023658566786054 0.016180658703661 0.002688753419761
25 −0.002233814412328 −0.010187262429483 −0.018357061617550 −0.012518726197641 −0.001880234103510
26 0.001619612427739 0.007614467619845 0.013993527079620 0.009494927822061 0.001251724331496
27 −0.001149754797462 −0.005581013645482 −0.010458788127664 −0.007046111678278 −0.000781330341624
28 0.000796663861173 0.004000709213585 0.007645263913791 0.005101208642714 0.000441439263909
29 −0.000536633718021 −0.002795599745994 −0.005449025857033 −0.003589487278191 −0.000206255609100
30 0.000349545529838 0.001895830247705 0.003770427414620 0.002441776327828 0.000053417213621
31 −0.000218498674617 −0.001239482351210 −0.002517028536055 −0.001596601179870 0.000032333826084
32 0.000129607420879 0.000773720821702 0.001606542109353 0.000996204580929 −0.000067169661349
33 −0.000071635910779 −0.000454306657023 −0.000967504900344 −0.000587397249461 0.000068485823988
34 0.000035791801597 0.000245674851842 0.000539971198304 0.000321069026938 −0.000055829905847
35 −0.000015815837778 −0.000125519073336 −0.000300465948474 −0.000202997633437 0.000015539277740