- Research Article
- Open Access
- Published:
Optimal Nonparametric Covariance Function Estimation for Any Family of Nonstationary Random Processes
EURASIP Journal on Advances in Signal Processing volume 2011, Article number: 140797 (2011)
Abstract
A covariance function estimate of a zero-mean nonstationary random process in discrete time is accomplished from one observed realization by weighting observations with a kernel function. Several kernel functions have been proposed in the literature. In this paper, we prove that the mean square error (MSE) optimal kernel function for any parameterized family of random processes can be computed as the solution to a system of linear equations. Even though the resulting kernel is optimized for members of the chosen family, it seems to be robust in the sense that it is often close to optimal for many other random processes as well. We also investigate a few examples of families, including a family of locally stationary processes, nonstationary AR-processes, and chirp processes, and their respective MSE optimal kernel functions.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Sandberg (EURASIP Member), J., Hansson-Sandsten (EURASIP Member), M. Optimal Nonparametric Covariance Function Estimation for Any Family of Nonstationary Random Processes. EURASIP J. Adv. Signal Process. 2011, 140797 (2011). https://doi.org/10.1155/2011/140797
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2011/140797
Keywords
- Covariance
- Information Technology
- Linear Equation
- Mean Square Error
- Kernel Function