Open Access

Evolutionary Splines for Cepstral Filterbank Optimization in Phoneme Classification

  • Leandro D. Vignolo1Email author,
  • Hugo L. Rufiner1,
  • Diego H. Milone1 and
  • John C. Goddard2
EURASIP Journal on Advances in Signal Processing20112011:284791

Received: 14 July 2010

Accepted: 24 December 2010

Published: 3 January 2011


Mel-frequency cepstral coefficients have long been the most widely used type of speech representation. They were introduced to incorporate biologically inspired characteristics into artificial speech recognizers. Recently, the introduction of new alternatives to the classic mel-scaled filterbank has led to improvements in the performance of phoneme recognition in adverse conditions. In this work we propose a new bioinspired approach for the optimization of the filterbanks, in order to find a robust speech representation. Our approach—which relies on evolutionary algorithms—reduces the number of parameters to optimize by using spline functions to shape the filterbanks. The success rates of a phoneme classifier based on hidden Markov models are used as the fitness measure, evaluated over the well-known TIMIT database. The results show that the proposed method is able to find optimized filterbanks for phoneme recognition, which significantly increases the robustness in adverse conditions.

Publisher note

To access the full article, please see PDF.

Authors’ Affiliations

Research Center for Signals, Systems and Computational Intelligence, Department of Informatics, National University of Litoral, CONICET
Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, Unidad Iztapalapa


© Leandro D. Vignolo et al. 2011

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.