Skip to main content

Selection of Nonstationary Dynamic Features for Obstructive Sleep Apnoea Detection in Children


This paper discusses the methodology for selecting a set of relevant nonstationary features to increase the specificity of the obstructive sleep apnea detector. Dynamic features are extracted from time-evolving spectral representation of photoplethysmography envelope recordings. In this regard, a time-evolving version of the standard linear multivariate decomposition is discussed to perform stochastic dimensionality reduction. For training aim, this work analyzes the concrete set comprising filter banked dynamic features that include spectral centroids, the cepstral coefficients as well as their time-variant energies. Performance of classifier accuracy is provided for the collected polysomnography recordings of 21 children. Moreover, since the apnea diagnosing is based on analysis of set of fragments partitioned from the photoplethysmography envelope recordings, a new approach for their indirect labeling is described. As a result, performed outcomes of accuracy bring enough evidence that if using a subset of cepstral-based dynamic features, then patient classification accuracy can reach as much as 83.3% value, when using a k-nn classifier, as well. Therefore, photoplethysmography-based detection provides an adequate scheme for obstructive sleep apnea diagnosis.

Publisher note

To access the full article, please see PDF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. M. Sepulveda-Cano.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sepulveda-Cano, L.M., Gil, E., Laguna, P. et al. Selection of Nonstationary Dynamic Features for Obstructive Sleep Apnoea Detection in Children. EURASIP J. Adv. Signal Process. 2011, 538314 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Obstructive Sleep Apnea
  • Sleep Apnea
  • Dynamic Feature
  • Obstructive Sleep Apnoea
  • Polysomnography Recording