- Research Article
- Open Access
- Published:
Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
EURASIP Journal on Advances in Signal Processing volume 2011, Article number: 615717 (2011)
Abstract
Quantifying the phase synchrony between signals is important in many different applications, including the study of the chaotic oscillators in physics and the modeling of the joint dynamics between channels of brain activity recorded by electroencephalogram (EEG). Current measures of phase synchrony rely on either the wavelet transform or the Hilbert transform of the signals and suffer from constraints such as the limit on time-frequency resolution in the wavelet analysis and the prefiltering requirement in Hilbert transform. Furthermore, the current phase synchrony measures are limited to quantifying bivariate relationships and do not reveal any information about multivariate synchronization patterns, which are important for understanding the underlying oscillatory networks. In this paper, we address these two issues by employing the recently introduced multivariate empirical mode decomposition (MEMD) for quantifying multivariate phase synchrony. First, an MEMD-based bivariate phase synchrony measure is defined for a more robust description of time-varying phase synchrony across frequencies. Second, the proposed bivariate phase synchronization index is used to quantify multivariate synchronization within a network of oscillators using measures of multiple correlation and complexity. Finally, the proposed measures are applied to both simulated networks of chaotic oscillators and real EEG data.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Mutlu, A.Y., Aviyente, S. Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization. EURASIP J. Adv. Signal Process. 2011, 615717 (2011). https://doi.org/10.1155/2011/615717
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2011/615717
Keywords
- Phase Synchrony
- Multivariate Phase
- Current Phase
- Chaotic Oscillator
- Bivariate Relationship