Open Access

A Signal-Specific QMF Bank Design Technique Using Karhunen-Loéve Transform Approximation

EURASIP Journal on Advances in Signal Processing20112011:753572

Received: 31 July 2010

Accepted: 5 January 2011

Published: 10 January 2011


Block Wavelet Transforms (BWTs) are orthogonal matrix transforms that can be obtained from orthogonal subband filter banks. They were initially generated to produce matrix transforms which may carry nice properties inheriting from wavelets, as alternatives to DCT and similar matrix transforms. Although the construction methodology of BWT is clear, the reverse operation was not researched. In certain cases, a desirable matrix transform can be generated from available data using the Karhunen-Loéve transform (KLT). It is, therefore, of interest to develop a subband decomposition filter bank that leads to this particular KLT as its BWT. In this work, this dual problem is considered as a design attempt for the filter bank, hence the wavelets. The filters of the decomposition are obtained through lattice parameterization by minimizing the error between the KLT and the BWT matrices. The efficiency of the filters is measured according to the coding gains obtained after the subband decomposition and the experimental results are compared with Daubechies-2 and Daubechies-4 filter banks. It is shown that higher coding gains are obtained as the number of stages in the subband decomposition is increased.

Publisher note

To access the full article, please see PDF.

Authors’ Affiliations

Department of Computer Engineering, Anadolu University
Department of Electrical and Electronics Engineering, Anadolu University


© M. Dogan and O. N. Gerek. 2011

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.