Skip to main content

Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations

Abstract

In this first attempt to extract a map of the kinetic Sunyaev-Zel'dovich (KSZ) temperature fluctuations from the cosmic microwave background (CMB) anisotropies, we use a method which is based on simple and minimal assumptions. We first focus on the intrinsic limitations of the method due to the cosmological signal itself. We demonstrate using simulated maps that the KSZ reconstructed maps are in quite good agreement with the original input signal with a correlation coefficient between original and reconstructed maps of on average, and an error on the standard deviation of the reconstructed KSZ map of only % on average. To achieve these results, our method is based on the fact that some first-step component separation provides us with (i) a map of Compton parameters for the thermal Sunyaev-Zel'dovich (TSZ) effect of galaxy clusters, and (ii) a map of temperature fluctuations which is the sum of primary CMB and KSZ signals. Our method takes benefit from the spatial correlation between KSZ and TSZ effects which are both due to the same galaxy clusters. This correlation allows us to use the TSZ map as a spatial template in order to mask, in the map, the pixels where the clusters must have imprinted an SZ fluctuation. In practice, a series of TSZ thresholds is defined and for each threshold, we estimate the corresponding KSZ signal by interpolating the CMB fluctuations on the masked pixels. The series of estimated KSZ maps is finally used to reconstruct the KSZ map through the minimisation of a criterion taking into account two statistical properties of the KSZ signal (KSZ dominates over primary anisotropies at small scales, KSZ fluctuations are non-Gaussian distributed). We show that the results are quite sensitive to the effect of beam convolution, especially for large beams, and to the corruption by instrumental noise.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivier Forni.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Forni, O., Aghanim, N. Adapted Method for Separating Kinetic SZ Signal from Primary CMB Fluctuations. EURASIP J. Adv. Signal Process. 2005, 587370 (2005). https://doi.org/10.1155/ASP.2005.2413

Download citation

Keywords and phrases

  • cosmic microwave background
  • data analysis