Skip to main content

Computationally Efficient Blind Code Synchronization for Asynchronous DS-CDMA Systems with Adaptive Antenna Arrays

Abstract

A novel space-time adaptive near-far robust code-synchronization array detector for asynchronous DS-CDMA systems is developed in this paper. There are the same basic requirements that are needed by the conventional matched filter of an asynchronous DS-CDMA system. For the real-time applicability, a computationally efficient architecture of the proposed detector is developed that is based on the concept of the multistage Wiener filter (MWF) of Goldstein and Reed. This multistage technique results in a self-synchronizing detection criterion that requires no inversion or eigendecomposition of a covariance matrix. As a consequence, this detector achieves a complexity that is only a linear function of the size of antenna array (), the rank of the MWF (), the system processing gain (), and the number of samples in a chip interval (), that is,. The complexity of the equivalent detector based on the minimum mean-squared error (MMSE) or the subspace-based eigenstructure analysis is a function of. Moreover, this multistage scheme provides a rapid adaptive convergence under limited observation-data support. Simulations are conducted to evaluate the performance and convergence behavior of the proposed detector with the size of the-element antenna array, the amount of the-sample support, and the rank of the-stage MWF. The performance advantage of the proposed detector over other DS-CDMA detectors is investigated as well.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chia-Chang Hu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, CC. Computationally Efficient Blind Code Synchronization for Asynchronous DS-CDMA Systems with Adaptive Antenna Arrays. EURASIP J. Adv. Signal Process. 2005, 132973 (2005). https://doi.org/10.1155/ASP.2005.683

Download citation

Keywords and phrases:

  • code-timing acquisition
  • rank reduction
  • smart antennas
  • adaptive interference suppression
  • generalized likelihood ratio test
\