- Research Article
- Open access
- Published:
Practical Network-Based Techniques for Mobile Positioning in UMTS
EURASIP Journal on Advances in Signal Processing volume 2006, Article number: 012930 (2006)
Abstract
This paper presents results of research on network-based positioning for UMTS (universal mobile telecommunication system). Two new applicable network-based cellular location methods are proposed and assessed by field measurements and simulations. The obtained results indicate that estimation of the position at a sufficient accuracy for most of the location-based services does not have to involve significant changes in the terminals and in the network infrastructure. In particular, regular UMTS terminals can be used in the presented PCM (pilot correlation method), while the other proposed method - the ECID+RTT (cell identification + round trip time) requires only minor software updates in the network and user equipment. The performed field measurements of the PCM reveal that in an urban network, of users can be located with an accuracy ofm. In turn, simulations of the ECID+RTT report accuracy ofm–m for of the location estimates in an urban scenario.
References
3GPP TS 25.305 : UMTS; UE positioning in Universal Terrestrial Radio Access Network (UTRAN); Stage 2. ver. 7.1.0, Rel. 7, https://doi.org/www.3gpp.org
Borkowski J, Niemelä J, Lempiäinen J: Enhanced performance of Cell ID+RTT by implementing forced soft handover algorithm. Proceedings of the 60th IEEE Vehicular Technology Conference, September 2004, Los Angeles, Calif, USA 5: 3545–3549.
Borkowski J, Lempiäinen J: Geometrical transformations as an efficient mean for reducing impact of multipath propagation on positioning accuracy. Proceedings of the 5th IEE International Conference on 3G Mobile Communication Technologies, October 2004, London, UK 368–372.
Borkowski J, Lempiäinen J: Pilot correlation method for urban UMTS networks. Proceedings of the 11th European Wireless Conference, April 2005, Nicosia, Cyprus 2: 465–469.
FCC publications : FCC Acts to Promote Competition and Public Safety in Enhanced Wireless 911 Services. https://doi.org/www.fcc.gov/Bureaus/Wireless/News_Releases/1999/nrwl9040.doc
Koshima H, Hoshen J: Personal locator services emerge. IEEE Spectrum 2000, 37(2):41–48. 10.1109/6.819928
3GPP TS 22.071 : Location Services (LCS); Stage 2. ver. 7.3.0, Rel. 7, https://doi.org/www.3gpp.org
Naghian S: Hybrid predictive handover in mobile networks. Proceedings of the 58th IEEE Vehicular Technology Conference, October 2003, Orlando, Fla, USA 3: 1918–1922.
Lin H-P, Juang R-T, Lin D-B: Improved location-based handover algorithm for mobile cellular systems with verification of GSM measurements data. Proceedings of the 60th IEEE Vehicular Technology Conference, September 2004, Los Angeles, Calif, USA 7: 5170–5174.
Markopoulos A, Pissaris P, Kyriazakaos S, Sykas E: Optimized handover procedure based on mobile location in cellular systems. Proceedings of the 14th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC '03), September 2003, Beijing, China 3: 2490–2494.
3GPP TS 25.215 : UMTS; Physical layer; Measurements (FDD). ver. 6.0.0, Rel. 6, https://doi.org/www.3gpp.org
Zhu L, Zhu J: Signal-strength-based cellular location using dynamic window-width and double-averaging algorithm. Proceedings of the 52nd IEEE Vehicular Technology Conference, September 2000, Boston, Mass, USA 6: 2992–2997.
Spirito MA, Mattiolli AG: Preliminary experimental results of a GSM mobile phones positioning system based on timing advance. Proceedings of the 50th IEEE Vehicular Technology Conference, September 1999, Amsterdam, The Netherlands 4: 2072–2076.
Silventoinen MI, Rantalainen T: Mobile station emergency locating in GSM. Proceedings of the IEEE International Conference on Personal Wireless Communications (ICPWC '96), February 1996, New Delhi, India 232–238.
Borkowski J, Niemelä J, Lempiäinen J: Performance of Cell ID+RTT hybrid positioning method for UMTS radio networks. Proceedings of the 5th European Wireless Conference, February 2004, Barcelona, Spain 487–492.
3GPP TSG-RAN WG1 doc. No R1-99b79 : Time Aligned IP-DL positioning technique. 1999, https://doi.org/www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_07/Docs/Pdfs/R1-99b79.pdf
Ludden B, Lopes L: Cellular based location technologies for UMTS: a comparison between IPDL and TA-IPDL. Proceedings of the 51st IEEE Vehicular Technology Conference, May 2002, Tokyo, Japan 2: 1348–1353.
3GPP TSG-RAN WG1 doc. No R1-00-1186 : Initial Simulation Results of the OTDOA-PE positioning method. 2000, https://doi.org/www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_16/Docs/PDFs/R1-00-1186.pdf
Bartlett D, Morris P: CVB: a technique to improve OTDOA positioning in 3G networks. Cambridge Positioning System Ltd company whitepaper, 2002, https://doi.org/www.cursor-system.com/document_library/CPS_CVB_Overview_02May02.pdf
Project report Emily IST 2000–26040 deliverable D18 : Business Models Report. 2002, https://doi.org/www.emilypgm.com/acrobat/emily_d18.pdf
Duffett-Smith PJ, Hansen P: Precise time transfer in a mobile radio terminal. Cambridge Positioning Systems Ltd company whitepaper, 2002, https://doi.org/www.cursor-system.com/cps/pdf/EGPSwhitepaper.pdf
Sakagami S, Aoyama S, Kuboi K, Shirota S, Akeyama A: Vehicle position estimates by multibeam antennas in multipath environments. IEEE Transactions on Vehicular Technology 1992, 41(1):63–68. 10.1109/25.120146
Caffery J Jr., Stuber GL: Subscriber location in CDMA cellular networks. IEEE Transactions on Vehicular Technology 1998, 47(2):406–416. 10.1109/25.669079
Deng P, Fan PZ: An AOA assisted positioning system. Proceedings of the International Conference on Communications Technology (ICCT '00), August 2000, Beijing, China 2: 1501–1504.
Venkatraman S, Caffery J Jr.: Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '04), March 2004, Atlanta, Ga, USA 1: 274–278.
Cong L, Zhuang W: Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Transactions on Wireless Communications 2002, 1(3):439–447. 10.1109/TWC.2002.800542
Thomas NJ, Cruickshank DGM, Laurenson DI: Performance of a TDOA-AOA hybrid mobile location system. Proceedings of the 2nd IEE International Conference on 3G Mobile Communication Technology, March 2001, London, UK 216–220.
Laitinen H, Lahteenmaki J, Nordstrom T: Database correlation method for GSM location. Proceedings of the 53rd IEEE Vehicular Technology Conference, May 2001, Rhodes, Greece 4: 2504–2508.
Sallent O, Agusti R, Calvo X: A mobile location service demonstrator based on power measurements. Proceedings of the 60th IEEE Vehicular Technology Conference, September 2004, Los Angeles, Calif, USA 6: 4096–4099.
Zimmermann D, Baumann J, Layh M, Landstorfer F, Hoppe R, Wölfle G: Database correlation for positioning of mobile terminals in cellular networks using wave propagation models. Proceedings of the 60th IEEE Vehicular Technology Conference, September 2004, Los Angeles, Calif, USA 7: 4682–4686.
Ahonen S, Laitinen H: Database correlation method for UMTS location. Proceedings of the 57th IEEE Vehicular Technology Conference, April 2003, Jeju, South Korea 4: 2696–2700.
Soliman S, Agashe P, Fernandez I, Vayanos A, Gaal P, Oljaca M:: a hybrid position location system. Proceedings of the 6th IEEE International Symposium on Spread Spectrum Techniques and Applications, September 2000, Parsippany, NJ, USA 1: 330–335.
van Diggelen F: Global Locate Indoor GPS Chipset & Services. Global Locate Inc. company whitepaper, https://doi.org/www.globallocate.com/GlobalLocateIndoorGPS.pdf
3GPP TR 23.835 Release 6 : Technical Specification Group Applicability of GALILEO in LCS; Study into Applicability of GALILEO in LCS. ver. 1.0.0, Rel. 6, https://doi.org/www.3gpp.org
3GPP TR 25.922 : UMTS; Radio resource management strategies. ver. 6.0.1, Rel. 6, https://doi.org/www.3gpp.org
Niemelä J, Lempiäinen J: Impact of the base station antenna beamwidth on capacity in WCDMA cellular networks. Proceedings of the 57th IEEE Vehicular Technology Conference, April 2003, Jeju, South Korea 1: 80–84.
Beveridge G, Schechter R: Optimisation: Theory and Practice. McGraw-Hill, New York, NY, USA; 1970.
Kaplan ED: Understanding GPS: Principles and Applications. Artech House, London, UK; 1996.
Jeong Y, You H, Lee C: Calibration of NLOS error for positioning systems. Proceedings of the 53rd IEEE Vehicular Technology Conference, May 2001, Rhodes, Greece 4: 2605–2608.
Greenstein LJ, Erceg V, Yeh YS, Clark MV: A new path-gain/delay-spread propagation model for digital cellular channels. IEEE Transactions on Vehicular Technology 1997, 46(46):477–485.
Sousa ES, Jovanovic VM, Daigneault C: Delay spread measurements for the digital cellular channel in Toronto. IEEE Transactions on Vehicular Technology 1994, 43(4):837–847. 10.1109/25.330145
van Rees J: Measurements of the wide-band radio channel characteristics for rural, residential, and suburban areas. IEEE Transactions on Vehicular Technology 1987, 36(1):2–6.
Niemelä J, Borkowski J, Lempiäinen J: Using IDLE mode measurements for network plan verification in WCDMA. Proceedings of the 8th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC '05), September 2005, Aalborg, Denmark
3GPP TR 25.853 : UMTS; Technical Specification Group Radio Access Network; Delay Budget within the Access Stratum. ver. 4.0.0, Rel. 4, https://doi.org/www.3gpp.org
3GPP TS 25.133 : UMTS; Requirements for support of radio resource management (FDD). ver. 6.9.0, Rel. 6, https://doi.org/www.3gpp.org
Holma H, Toskala A: WCDMA for UMTS. 3rd edition. John Wiley & Sons, New York, NY, USA; 2004.
Lacki J: Optimization of soft handover parameters for UMTS network in indoor environment, M.S. thesis. Tampere University of Technology, Tampere, Finland; December 2005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Borkowski, J., Lempiäinen, u. Practical Network-Based Techniques for Mobile Positioning in UMTS. EURASIP J. Adv. Signal Process. 2006, 012930 (2006). https://doi.org/10.1155/ASP/2006/12930
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/ASP/2006/12930