Skip to main content

Fast Adaptive Blind MMSE Equalizer for Multichannel FIR Systems


We propose a new blind minimum mean square error (MMSE) equalization algorithm of noisy multichannel finite impulse response (FIR) systems, that relies only on second-order statistics. The proposed algorithm offers two important advantages: a low computational complexity and a relative robustness against channel order overestimation errors. Exploiting the fact that the columns of the equalizer matrix filter belong both to the signal subspace and to the kernel of truncated data covariance matrix, the proposed algorithm achieves blindly a direct estimation of the zero-delay MMSE equalizer parameters. We develop a two-step procedure to further improve the performance gain and control the equalization delay. An efficient fast adaptive implementation of our equalizer, based on the projection approximation and the shift invariance property of temporal data covariance matrix, is proposed for reducing the computational complexity from to, where is the number of emitted signals, the data vector length, and the dimension of the signal subspace. We then derive a statistical performance analysis to compare the equalization performance with that of the optimal MMSE equalizer. Finally, simulation results are provided to illustrate the effectiveness of the proposed blind equalization algorithm.


  1. 1.

    Abed-Meraim K, Chkeif A, Hua Y: Fast orthogonal PAST algorithm. IEEE Signal Processing Letters 2000, 7(3):60–62. 10.1109/97.823526

    Article  Google Scholar 

  2. 2.

    Abed-Meraim K, Loubaton P, Moulines E: A subspace algorithm for certain blind identification problems. IEEE Transactions on Information Theory 1997, 43(2):499–511. 10.1109/18.556108

    Article  Google Scholar 

  3. 3.

    Abed-Meraim K, Qiu W, Hua Y: Blind system identification. Proceedings of the IEEE 1997, 85(8):1310–1322. 10.1109/5.622507

    Article  Google Scholar 

  4. 4.

    Badeau R, David B, Richard G: Yet another subspace tracker. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 4: 329–332.

    Google Scholar 

  5. 5.

    Belouchrani A, Abed-Meraim K: Constant modulus blind source separation technique: a new approach. Proceedings of the International Symposium on Signal Processing and Its Applications (ISSPA '96), August 1996, Gold Coast, Australia 1: 232–235.

    Google Scholar 

  6. 6.

    Brewer JW: Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems 1978, 25(9):772–781. 10.1109/TCS.1978.1084534

    MathSciNet  Article  Google Scholar 

  7. 7.

    Cardoso J-F, Moulines E: Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants. IEEE Transactions on Signal Processing 1995, 43(1):214–224. 10.1109/78.365301

    Article  Google Scholar 

  8. 8.

    Chkeif A, Abed-Meraim K, Kawas-Kaleh G, Hua Y: Spatio-temporal blind adaptive multiuser detection. IEEE Transactions on Communications 2000, 48(5):729–732. 10.1109/26.843180

    Article  Google Scholar 

  9. 9.

    Davila CE: Efficient, high performance, subspace tracking for time-domain data. IEEE Transactions on Signal Processing 2000, 48(12):3307–3315. 10.1109/78.886994

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gazzah H, Regalia PA, Delmas J-P, Abed-Meraim K: A blind multichannel identification algorithm robust to order overestimation. IEEE Transactions on Signal Processing 2002, 50(6):1449–1458. 10.1109/TSP.2002.1003068

    Article  Google Scholar 

  11. 11.

    Gerstacker WH, Taylor DP: Blind channel order estimation based on second-order statistics. IEEE Signal Processing Letters 2003, 10(2):39–42. 10.1109/LSP.2002.807866

    Article  Google Scholar 

  12. 12.

    Godard DN: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications 1980, 28(11):1867–1875. 10.1109/TCOM.1980.1094608

    Article  Google Scholar 

  13. 13.

    Haykin S: Adaptive Filter Theory. 3rd edition. Prentice Hall, Englwood Cliffs, NJ, USA; 1996.

    Google Scholar 

  14. 14.

    Kacha I, Abed-Meraim K, Belouchrani A: A fast adaptive blind equalization algorithm robust to channel order over-estimation errors. Proceedings of the 3rd IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2004, Barcelona, Spain 148–152.

    Google Scholar 

  15. 15.

    Kacha I, Abed-Meraim K, Belouchrani A: A new blind adaptive MMSE equalizer for MIMO systems. Proceedings of the 16th Annual IEEE International Symposium on Personal Indoor and Mobile Radio Communications, September 2005, Berlin, Germany

    Google Scholar 

  16. 16.

    Li X, Fan H: Direct estimation of blind zero-forcing equalizers based on second-order statistics. IEEE Transactions on Signal Processing 2000, 48(8):2211–2218. 10.1109/78.852002

    Article  Google Scholar 

  17. 17.

    Liavas AP, Regalia PA, Delmas J-P: Blind channel approximation: effective channel order determination. IEEE Transactions on Signal Processing 1999, 47(12):3336–3344. 10.1109/78.806077

    Article  Google Scholar 

  18. 18.

    Moulines E, Duhamel P, Cardoso J-F, Mayrargue S: Subspace methods for the blind identification of multichannel FIR filters. IEEE Transactions on Signal Processing 1995, 43(2):516–525. 10.1109/78.348133

    Article  Google Scholar 

  19. 19.

    Neeser FD, Massey JL: Proper complex random processes with applications to information theory. IEEE Transactions on Information Theory 1993, 39(4):1293–1303. 10.1109/18.243446

    MathSciNet  Article  Google Scholar 

  20. 20.

    Sato Y: A method of self-recovering equalization for multilevel amplitude-modulation. IEEE Transactions on Communications 1975, 23(6):679–682. 10.1109/TCOM.1975.1092854

    Article  Google Scholar 

  21. 21.

    Shen J, Ding Z: Direct blind MMSE channel equalization based on second-order statistics. IEEE Transactions on Signal Processing 2000, 48(4):1015–1022. 10.1109/78.827535

    Article  Google Scholar 

  22. 22.

    Sheng M, Fan H: Blind MMSE equalization: a new direct method. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 5: 2457–2460.

    Google Scholar 

  23. 23.

    Tong L, Xu G, Kailath T: A new approach to blind identification and equalization of multipaths channels. Proceedings of 25th Asilomar Conference on Circuits, Systems and Computers, November 1991, Pacific Grove, Calif, USA 856–860.

    Google Scholar 

  24. 24.

    Tsatsanis MK, Giannakis GB: Modelling and equalization of rapidly fading channels. International Journal of Adaptive Control and Signal Processing 1996, 10(2–3):159–176. 10.1002/(SICI)1099-1115(199603)10:2/3<159::AID-ACS346>3.0.CO;2-M

    Article  Google Scholar 

  25. 25.

    van der Veen A-J, Paulraj A: An analytical constant modulus algorithm. IEEE Transactions on Signal Processing 1996, 44(5):1136–1155. 10.1109/78.502327

    Article  Google Scholar 

  26. 26.

    Xavier J, Barroso V: A channel order independent method for blind equalization of MIMO systems. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '99), March 1999, Phoenix, Ariz, USA 5: 2897–2900.

    Google Scholar 

  27. 27.

    Yang B: Projection approximation subspace tracking. IEEE Transactions on Signal Processing 1995, 43(1):95–107. 10.1109/78.365290

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ibrahim Kacha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kacha, I., Abed-Meraim, K. & Belouchrani, A. Fast Adaptive Blind MMSE Equalizer for Multichannel FIR Systems. EURASIP J. Adv. Signal Process. 2006, 014827 (2006).

Download citation


  • Minimum Mean Square Error
  • Finite Impulse Response
  • Signal Subspace
  • Equalization Algorithm
  • Shift Invariance