Skip to main content

A Packetized SPIHT Algorithm with Overcomplete Wavelet Coefficients for Increased Robustness

Abstract

This paper presents a wavelet-based image encoding scheme with error resilience and error concealment suitable for transmission over networks prone to packet losses. The scheme involves partitioning the data into independent descriptions of roughly equal lengths, achieved by a combination of packetization and modifications to the wavelet tree structure without additional redundancy. With a weighted-averaging-based interpolation method, our proposed encoding scheme attains an improvement of about 0.5–1.5 dB in PSNR over other similar methods. We also investigate the use of overcomplete wavelet transform coefficients as side information for our encoding scheme to improve the error resilience when severe packet losses occur. Experiments show that we are able to achieve a high coding performance along with a good perceptual quality for the reconstructed image.

References

  1. 1.

    Goyal VK: Multiple description coding: compression meets the network. IEEE Signal Processing Magazine 2001, 18(5):74–93. 10.1109/79.952806

    Article  Google Scholar 

  2. 2.

    Vaishampayan VA: Design of multiple description scalar quantizers. IEEE Transactions on Information Theory 1993, 39(3):821–834. 10.1109/18.256491

    MathSciNet  Article  Google Scholar 

  3. 3.

    Servetto SD, Ramachandran K, Vaishampayan VA, Nahrstedt K: Multiple description wavelet based image coding. IEEE Transactions on Image Processing 2000, 9(5):813–826. 10.1109/83.841528

    Article  Google Scholar 

  4. 4.

    Srinivasan M, Chellappa R: Multiple description subband coding. Proceedings of IEEE International Conference on Image Processing (ICIP '98), October 1998, Chicago, Ill, USA 684–688.

    Google Scholar 

  5. 5.

    Mohr AE, Riskin EA, Ladner RE: Unequal loss protection: graceful degradation of image quality overpacket erasure channels through forward error correction. IEEE Journal on Selected Areas in Communications 2000, 18(6):819–828. 10.1109/49.848236

    Article  Google Scholar 

  6. 6.

    Shapiro JM: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 1993, 41(12):3445–3462. 10.1109/78.258085

    Article  Google Scholar 

  7. 7.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996, 6(3):243–250. 10.1109/76.499834

    Article  Google Scholar 

  8. 8.

    Creusere CD: A new method of robust image compression based on the embedded zerotree wavelet algorithm. IEEE Transactions on Image Processing 1997, 6(10):1436–1442. 10.1109/83.624967

    Article  Google Scholar 

  9. 9.

    Rogers JK, Cosman PC: Robust wavelet zerotree image compression with fixed-length packetization. Proceedings of Data Compression Conference (DCC '98), March–April 1998, Snowbird, Utah, USA 418–427.

    Google Scholar 

  10. 10.

    Bajic IV, Woods JW: Domain-based multiple description coding of images and video. IEEE Transactions on Image Processing 2003, 12(10):1211–1225. 10.1109/TIP.2003.817248

    Article  Google Scholar 

  11. 11.

    DeBrunner VE, DeBrunner L, Wang L, Radhakrishnan S: Error control and concealment for image transmission. IEEE Communications Society Surveys and Tutorials 2000., 3(1):

    Article  Google Scholar 

  12. 12.

    Kim T, Choi S, Van Dyck RE, Bose NK: Classified zerotree wavelet image coding and adaptive packetization for low-bit-rate transport. IEEE Transactions on Circuits and Systems for Video Technology 2001, 11(9):1022–1034. 10.1109/76.946519

    Article  Google Scholar 

  13. 13.

    Rane SD, Remus J, Sapiro G: Wavelet-domain reconstruction of lost blocks in wireless image transmission and packet-switched networks. Proceedings of IEEE International Conference on Image Processing (ICIP '02), September 2002, Rochester, NY, USA 1: I-309–I-312.

    Article  Google Scholar 

  14. 14.

    Vetterli M, Kovačević J: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs, NJ, USA; 1995.

    Google Scholar 

  15. 15.

    Strang G, Nguyen T: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, Mass, USA; 1996.

    Google Scholar 

  16. 16.

    Fliege NJ: Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. John Wiley & Sons, Chichester, UK; 1994.

    Google Scholar 

  17. 17.

    Li X: New results of phase shifting in the wavelet space. IEEE Signal Processing Letters 2003, 10(7):193–195. 10.1109/LSP.2003.811587

    Article  Google Scholar 

  18. 18.

    Wang Y, Orchard MT, Vaishampayan VA, Reibman AR: Multiple description coding using pairwise correlating transforms. IEEE Transactions on Image Processing 2001, 10(3):351–366. 10.1109/83.908500

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y Sriraja.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sriraja, Y., Karp, T. A Packetized SPIHT Algorithm with Overcomplete Wavelet Coefficients for Increased Robustness. EURASIP J. Adv. Signal Process. 2006, 019156 (2006). https://doi.org/10.1155/ASP/2006/19156

Download citation

Keywords

  • Packet Loss
  • Interpolation Method
  • Encode Scheme
  • Wavelet Coefficient
  • Code Performance