Skip to main content

Computationally Efficient Direction-of-Arrival Estimation Based on Partial A Priori Knowledge of Signal Sources


A computationally efficient method is proposed for estimating the directions-of-arrival (DOAs) of signals impinging on a uniform linear array (ULA), based on partial a priori knowledge of signal sources. Unlike the classical MUSIC algorithm, the proposed method merely needs the forward recursion of the multistage Wiener filter (MSWF) to find the noise subspace and does not involve an estimate of the array covariance matrix as well as its eigendecomposition. Thereby, the proposed method is computationally efficient. Numerical results are given to illustrate the performance of the proposed method.


  1. 1.

    Stoica P, Moses R: Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle Revier, NJ, USA; 1997.

    Google Scholar 

  2. 2.

    Schmidt RO: A signal subspace approach to multiple emitter location and spectral estimation, M.S. thesis. Stanford University, Stanford, Calif, USA; November 1981.

    Google Scholar 

  3. 3.

    Li J, Halder B, Stoica P, Viberg M: Computationally efficient angle estimation for signals with known waveforms. IEEE Transactions on Signal Processing 1995, 43(9):2154–2163. 10.1109/78.414778

    Article  Google Scholar 

  4. 4.

    Cedervall M, Moses RL: Efficient maximum likelihood DOA estimation for signals with known waveforms in the presence of multipath. IEEE Transactions on Signal Processing 1997, 45(3):808–811. 10.1109/78.558512

    Article  Google Scholar 

  5. 5.

    Li H, Pu H, Li J: Efficient maximum likelihood angle estimation for signals with known waveforms in white noise. Proceedings of 9th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, September 1998, Portland, Ore, USA 25–28.

    Google Scholar 

  6. 6.

    Xin J, Tsuji H, Ohmori H, Sano A: Directions-of-arrival tracking of coherent cyclostationary signals without eigendecomposition. Proceedings of 3rd IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC '01), March 2001, Taoyuan, Taiwan 318–321.

    Google Scholar 

  7. 7.

    Leshem A, van der Veen A-J: Direction-of-arrival estimation for constant modulus signals. IEEE Transactions on Signal Processing 1999, 47(11):3125–3129. 10.1109/78.796446

    Article  Google Scholar 

  8. 8.

    Witzgall HE, Goldstein JS: ROCK MUSIC-non-unitary spectral estimation. Tech. Rep. ASE-00-05-001 May 2000.

    Google Scholar 

  9. 9.

    Witzgall HE, Goldstein JS, Zoltowski MD: A non-unitary extension to spectral estimation. Proceedings of 9th IEEE Digital Signal Processing Workshop (DSP '00), October 2000, Hunt, Tex, USA

    Google Scholar 

  10. 10.

    Ward J, Compton RT Jr.: Improving the performance of a slotted ALOHA packet radio network with an adaptive array. IEEE Transactions on Communications 1992, 40(2):292–300. 10.1109/26.129191

    Article  Google Scholar 

  11. 11.

    Witzgall HE, Goldstein JS: Detection performance of the reduced-rank linear predictor ROCKET. IEEE Transactions on Signal Processing 2003, 51(7):1731–1738. 10.1109/TSP.2003.812840

    Article  Google Scholar 

  12. 12.

    Goldstein JS, Reed IS, Scharf LL: A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory 1998, 44(7):2943–2959. 10.1109/18.737524

    MathSciNet  Article  Google Scholar 

  13. 13.

    Xu G, Kailath T: Fast subspace decomposition. IEEE Transactions on Signal Processing 1994, 42(3):539–551. 10.1109/78.277846

    Article  Google Scholar 

  14. 14.

    Ricks D, Goldstein JS: Efficient implementation of multi-stage adaptive Wiener filters. Proceedings of Antenna Applications Symposium, September 2000, Allerton Park, Ill, USA

    Google Scholar 

  15. 15.

    Huang L, Wu S, Feng D, Zhang L: Low complexity method for signal subspace fitting. Electronics Letters 2004, 40(14):847–848. 10.1049/el:20040579

    Article  Google Scholar 

  16. 16.

    Shan T-J, Wax M, Kailath T: On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985, 33(4):806–811. 10.1109/TASSP.1985.1164649

    Article  Google Scholar 

  17. 17.

    Stoica P, Nehorai A: MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(5):720–741. 10.1109/29.17564

    MathSciNet  Article  Google Scholar 

  18. 18.

    Weiss AJ, Friedlander B: On the Cramer-Rao bound for direction finding of correlated signals. IEEE Transactions on Signal Processing 1993, 41(1):495–499.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lei Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, L., Wu, S., Feng, D. et al. Computationally Efficient Direction-of-Arrival Estimation Based on Partial A Priori Knowledge of Signal Sources. EURASIP J. Adv. Signal Process. 2006, 019514 (2006).

Download citation


  • Covariance
  • Information Technology
  • Covariance Matrix
  • Efficient Method
  • Quantum Information