Skip to main content

A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images

Abstract

Most of the available digital color cameras use a single image sensor with a color filter array (CFA) in acquiring an image. In order to produce a visible color image, a demosaicing process must be applied, which produces undesirable artifacts. An additional problem appears when the observed color image is also blurred. This paper addresses the problem of deconvolving color images observed with a single coupled charged device (CCD) from the super-resolution point of view. Utilizing the Bayesian paradigm, an estimate of the reconstructed image and the model parameters is generated. The proposed method is tested on real images.

References

  1. 1.

    Bayer BE: Color imaging array. 1976.

    Google Scholar 

  2. 2.

    Ramanath R: Interpolation methods for the Bayer color array, Ph.D. dissertation. North Carolina State University, Raleigh, NC, USA; 2000.

    Google Scholar 

  3. 3.

    Cok DR: Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal. 1987.

    Google Scholar 

  4. 4.

    Freeman TW: Median filter for reconstructing missing color samples. 1988.

    Google Scholar 

  5. 5.

    Laroche CA, Prescott MA: Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients. 1994.

    Google Scholar 

  6. 6.

    kimmel R: Demosaicing: image reconstruction from color CCD samples. IEEE Transactions Image Processing 1999, 8(9):1221–1228. 10.1109/83.784434

    Article  Google Scholar 

  7. 7.

    Gunturk BK, Altunbasak Y, Mersereau RM: Color plane interpolation using alternating projections. IEEE Transactions Image Processing 2002, 11(9):997–1013. 10.1109/TIP.2002.801121

    Article  Google Scholar 

  8. 8.

    Scheunders P: An orthogonal wavelet representation of multivalued images. IEEE Transactions Image Processing 2003, 12(6):718–725. 10.1109/TIP.2003.811502

    MathSciNet  Article  Google Scholar 

  9. 9.

    Alvarez LD, Molina R, Katsaggelos AK: High resolution images from a sequence of low resolution observations. In Digital Image Sequence Processing, Compression and Analysis. Edited by: Reed TR. CRC Press, Boca Raton, Fla, USA; 2004:233–259. chapter 9

    Google Scholar 

  10. 10.

    Ng MK, Chan RH, Chan TF, Yip AM: Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra and its Applications 2000, 316(1–3):89–104. 10.1016/S0024-3795(99)00274-8

    MathSciNet  Article  Google Scholar 

  11. 11.

    Nguyen N, Milanfar P: A wavelet-based interpolation-restoration method for superresolution. Circuits, Systems, and Signal Processing 2000, 19(4):321–338. 10.1007/BF01200891

    Article  Google Scholar 

  12. 12.

    Nguyen N, Milanfar P, Golub G: A computationally efficient superresolution image reconstruction algorithm. IEEE Transactions Image Processing 2001, 10(4):573–583. 10.1109/83.913592

    Article  Google Scholar 

  13. 13.

    Ng MK, Yip AM: A fast MAP algorithm for high-resolution image reconstruction with multisensors. Multidimensional Systems and Signal Processing 2001, 12(2):143–164. 10.1023/A:1011136812633

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kang MG, Chaudhuri S: Super-resolution image reconstruction. IEEE Signal Processing Magzine 2003, 20(3):19–20. 10.1109/MSP.2003.1203206

    Article  Google Scholar 

  15. 15.

    Bose NK, Chan RH, Ng MK: Special issue on high-resolution image reconstruction. I. Guest editorial. International Journal of Imaging Systems and Technology 2004, 14(2):35–35. 10.1002/ima.20005

    Article  Google Scholar 

  16. 16.

    Choi E, Choi J, Kang MG: Super-resolution approach to overcome physical limitations of imaging sensors: an overview. International Journal of Imaging Systems and Technology 2004, 14(2):36–46. 10.1002/ima.20006

    MathSciNet  Article  Google Scholar 

  17. 17.

    Farsiu S, Robinson D, Elad M, Milanfar P: Advances and challenges in super-resolution. International Journal of Imaging Systems and Technology 2004, 14(2):47–57. 10.1002/ima.20007

    Article  Google Scholar 

  18. 18.

    Zomet A, Peleg S: Multi-sensor super-resolution. Proceedings of 6th IEEE Workshop on Applications of Computer Vision (WACV '02), December 2002, Orlando, Fla, USA 27–31.

    Google Scholar 

  19. 19.

    Farsiu S, Elad M, Milanfar P: Multiframe demosaicing and super-resolution from undersampled color images. Computational Imaging II, January 2004, San Jose, Calif, USA, Proceedings of SPIE 5299: 222–233.

    Article  Google Scholar 

  20. 20.

    Gotoh T, Okutomi M: Direct super-resolution and registration using raw CFA images. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June–July 2004, Washington, DC, USA 2: 600–607.

    Google Scholar 

  21. 21.

    Farsiu S, Elad M, Milanfar P: Multi-frame demosaicing and super-resolution of color images. IEEE Transactions Image Processing 2006, 15(1):141–159.

    Article  Google Scholar 

  22. 22.

    Mateos J, Molina R, Katsaggelos AK: Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 3: 705–708.

    Google Scholar 

  23. 23.

    Molina R, Vega M, Abad J, Katsaggelos AK: Parameter estimation in Bayesian high-resolution image reconstruction with multisensors. IEEE Transactions Image Processing 2003, 12(12):1655–1667. 10.1109/TIP.2003.818117

    Article  Google Scholar 

  24. 24.

    Katsaggelos AK, Lay KT, Galatsanos NP: A general framework for frequency domain multi-channel signal processing. IEEE Transactions Image Processing 1993, 2(3):417–420. 10.1109/83.236528

    Article  Google Scholar 

  25. 25.

    Molina R, Mateos J, Katsaggelos AK, Vega M: Bayesian multichannel image restoration using compound Gauss-Markov random fields. IEEE Transactions Image Processing 2003, 12(12):1642–1654. 10.1109/TIP.2003.818015

    Article  Google Scholar 

  26. 26.

    Mateos J, Vega M, Molina R, Katsaggelos AK: Bayesian image estimation from an incomplete set of blurred, undersampled low resolution images. Proceedings of 1st Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '03), June 2003, Puerto de Andratx, Mallorca, Spain, Lecture Notes in Computer Science 2652: 538–546.

    Article  Google Scholar 

  27. 27.

    Molina R, Katsaggelos AK, Mateos J: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Transactions Image Processing 1999, 8(2):231–246. 10.1109/83.743857

    MathSciNet  Article  Google Scholar 

  28. 28.

    Commission Internationale de L'Éclairage : Colorimetry. 2nd edition. CIE, Vienna, Austria; 1986. publication CIE no. 15.2

    Google Scholar 

  29. 29.

    International Telecommunication Union : Basic Parameter Values for the HDTV Standard for the Studio and for International Programme Exchange. ITU, Geneva, Switzerland; 1990. ITU-R Recommendation BT.709

    Google Scholar 

  30. 30.

    Altunbasak Y 2002.https://doi.org/www.ece.gatech.edu/research/labs/MCCL/research/topic05.html available at:

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Vega.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vega, M., Molina, R. & Katsaggelos, A.K. A Bayesian Super-Resolution Approach to Demosaicing of Blurred Images. EURASIP J. Adv. Signal Process. 2006, 025072 (2006). https://doi.org/10.1155/ASP/2006/25072

Download citation

Keywords

  • Reconstructed Image
  • Quantum Information
  • Color Image
  • Couple Charged Device
  • Single Image