Skip to main content

Time Delay Estimation in Room Acoustic Environments: An Overview

Abstract

Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.). It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

References

  1. 1.

    Ehrenberg JE, Ewart TE, Morris RD: Signal-processing techniques for resolving individual pulses in a multipath signal. Journal of the Acoustical Society of America 1978, 63(6):1861–1865. 10.1121/1.381926

    Article  Google Scholar 

  2. 2.

    Owsley NL, Swope GR: Time delay estimation in a sensor array. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):519–523. 10.1109/TASSP.1981.1163554

    Article  Google Scholar 

  3. 3.

    Tremblay RJ, Carter GC, Lytle DW: A practical approach to the estimation of amplitude and time-delay parameters of a composite signal. IEEE Journal of Oceanic Engineering 1987, 12(1):273–278. 10.1109/JOE.1987.1145222

    Article  Google Scholar 

  4. 4.

    Wu R, Li J, Liu Z-S: Super resolution time delay estimation via MODE-WRELAX. IEEE Transactions on Aerospace and Electronic Systems 1999, 35(1):294–307. 10.1109/7.745699

    Article  Google Scholar 

  5. 5.

    Knapp CH, Carter GC: The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing 1976, 24(4):320–327. 10.1109/TASSP.1976.1162830

    Article  Google Scholar 

  6. 6.

    Carter GC: Time delay estimation for passive sonar signal processing. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):463–470. 10.1109/TASSP.1981.1163560

    Article  Google Scholar 

  7. 7.

    Carter GC: Coherence and time delay estimation. In Signal Processing Handbook. Edited by: Chen CH. Marcel Dekker, New York, NY, USA; 1988:443–482.

    Google Scholar 

  8. 8.

    Quazi AH: An overview on the time delay estimate in active and passive systems for target localization. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):527–533. 10.1109/TASSP.1981.1163618

    Article  Google Scholar 

  9. 9.

    Carter GC (Ed): Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test and Evaluation Engineers. IEEE Press, New York, NY, USA; 1993.

    Google Scholar 

  10. 10.

    Feder M, Weinstein E: Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988, 36(4):477–489. 10.1109/29.1552

    Article  Google Scholar 

  11. 11.

    Su G, Morf M: The signal subspace approach for multiple wide-band emitter location. IEEE Transactions on Acoustics, Speech, and Signal Processing 1983, 31(6):1502–1522. 10.1109/TASSP.1983.1164233

    Article  Google Scholar 

  12. 12.

    Reddi SS: Multiple source location—a digital approach. IEEE Transactions on Aerospace and Electronic Systems 1979, 15(1):95–105.

    Article  Google Scholar 

  13. 13.

    Manickam TG, Vaccaro RJ, Tufts DW: A least-squares algorithm for multipath time-delay estimation. IEEE Transactions on Signal Processing 1994, 42(11):3229–3233. 10.1109/78.330381

    Article  Google Scholar 

  14. 14.

    Fuchs J-J: Multipath time-delay detection and estimation. IEEE Transactions on Signal Processing 1999, 47(1):237–243. 10.1109/78.738263

    Article  Google Scholar 

  15. 15.

    Benesty J: Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. Journal of the Acoustical Society of America 2000, 107(1):384–391. 10.1121/1.428310

    Article  Google Scholar 

  16. 16.

    Doclo S, Moonen M: Robust adaptive time delay estimation for speaker localization in noisy and reverberant acoustic environments. EURASIP Journal on Applied Signal Processing 2003, 2003(11):1110–1124. 10.1155/S111086570330602X

    MATH  Google Scholar 

  17. 17.

    Dvorkind TG, Gannot S: Approaches for time different of arrival estimation in a noisy and reververant environment. Proceedings of International Workshop on Acoustic Echo and Noise Control (IWAENC '03), September 2003, Kyoto, Japan 215–218.

    Google Scholar 

  18. 18.

    Hassab JC, Boucher RE: Performance of the generalized cross correlator in the presence of a strong spectral peak in the signal. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):549–555. 10.1109/TASSP.1981.1163613

    Article  Google Scholar 

  19. 19.

    Miller LE, Lee JS: Error analysis of time delay estimation using a finite integration time correlator. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):490–496. 10.1109/TASSP.1981.1163557

    Article  Google Scholar 

  20. 20.

    Ianniello JP: Time delay estimation via cross-correlation in the presence of large estimation errors. IEEE Transactions on Acoustics, Speech, and Signal Processing 1982, 30(6):998–1003. 10.1109/TASSP.1982.1163992

    Article  Google Scholar 

  21. 21.

    Azaria M, Hertz D: Time delay estimation by generalized cross correlation methods. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984, 32(2):280–285. 10.1109/TASSP.1984.1164314

    Article  Google Scholar 

  22. 22.

    Bar-Shalom Y, Palmieri F, Kumar A, Shertukde HM: Analysis of wide-band cross correlation for time-delay estimation. IEEE Transactions on Signal Processing 1993, 41(1):385–387. 10.1109/TSP.1993.193159

    Article  Google Scholar 

  23. 23.

    Tugnait JK: Time delay estimation with unknown spatially correlated Gaussian noise. IEEE Transactions on Signal Processing 1993, 41(2):549–558. 10.1109/78.193197

    Article  Google Scholar 

  24. 24.

    Wu Y: Time delay estimation of non-Gaussian signal in unknown Gaussian noises using third-order cumulants. Electronics Letters 2002, 38(16):930–931. 10.1049/el:20020584

    Article  Google Scholar 

  25. 25.

    Huang Y(Arden), Benesty J: A class of frequency-domain adaptive approaches to blind multichannel identification. IEEE Transactions on Signal Processing 2003, 51(1):11–24. 10.1109/TSP.2002.806559

    MathSciNet  Article  Google Scholar 

  26. 26.

    Reed FA, Feintuch PL, Bershad NJ: Time delay estimation using the LMS adaptive filter—static behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):561–571. 10.1109/TASSP.1981.1163614

    Article  Google Scholar 

  27. 27.

    Etter DM, Stearns SD: Adaptive estimation of time delays in sampled data systems. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):582–587. 10.1109/TASSP.1981.1163568

    Article  Google Scholar 

  28. 28.

    Youn DH, Ahmed N, Carter GC: On using the LMS algorithm for time delay estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1982, 30(5):798–801. 10.1109/TASSP.1982.1163961

    Article  Google Scholar 

  29. 29.

    Ching PC, Chan YT: Adaptive time delay estimation with constraints. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988, 36(4):599–602. 10.1109/29.1562

    Article  Google Scholar 

  30. 30.

    So HC, Ching PC, Chan YT: A new algorithm for explicit adaptation of time delay. IEEE Transactions on Signal Processing 1994, 42(7):1816–1820. 10.1109/78.298289

    Article  Google Scholar 

  31. 31.

    Moghaddam PP, Amindavar H, Kirlin RL: A new time-delay estimation in multipath. IEEE Transactions on Signal Processing 2003, 51(5):1129–1142. 10.1109/TSP.2003.810290

    MathSciNet  Article  Google Scholar 

  32. 32.

    Ianniello JP: Large and small error performance limits for multipath time delay estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986, 34(2):245–251. 10.1109/TASSP.1986.1164820

    Article  Google Scholar 

  33. 33.

    Hassab JC: Contact localization and motion analysis in the ocean environment: a perspective. IEEE Journal of Oceanic Engineering 1983, 8(3):136–147. 10.1109/JOE.1983.1145559

    Article  Google Scholar 

  34. 34.

    El-Hawary F, Aminzadeh F, Mbamalu GAN: The generalized Kalman filter approach to adaptive underwater target tracking. IEEE Journal of Oceanic Engineering 1992, 17(1):129–137. 10.1109/48.126961

    Article  Google Scholar 

  35. 35.

    Clay CS, Medwin H: Acoustical Oceanography. John Wiley & Sons, New York, NY, USA; 1977.

    Google Scholar 

  36. 36.

    Stéphenne A, Champagne B: Cepstral prefiltering for time delay estimation in reverberant environments. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '95), May 1995, Detroit, Mich, USA 5: 3055–3058.

    Google Scholar 

  37. 37.

    Brandstein MS, Silverman HF: A robust method for speech signal time-delay estimation in reverberant rooms. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), April 1997, Munich, Germany 1: 375–378.

    Google Scholar 

  38. 38.

    Dvorkind TG, Gannot S: Time difference of arrival estimation of speech source in a noisy and reverberant environment. Signal Processing 2005, 85(1):177–204. 10.1016/j.sigpro.2004.09.014

    Article  Google Scholar 

  39. 39.

    Huang Y(Arden), Benesty J: Adaptive multichannel time delay estimation based on blind system identification for acoustic source localization. In Adaptive Signal Processing—Applications to Real-World Problems. Edited by: Benesty J, Huang Y(Arden). Springer, Berlin, Germany; 2003:227–248. chapter 8

    Google Scholar 

  40. 40.

    Jacovitti G, Scarano G: Discrete time techniques for time delay estimation. IEEE Transactions on Signal Processing 1993, 41(2):525–533. 10.1109/78.193195

    Article  Google Scholar 

  41. 41.

    Jacovitti G, Neri A, Cusani R: On a fast digital method of estimating the autocorrelation of a Gaussian stationary process. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984, 32(5):968–976. 10.1109/TASSP.1984.1164439

    Article  Google Scholar 

  42. 42.

    Jacovitti G, Cusani R: An efficient technique for high correlation estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987, 35(5):654–660. 10.1109/TASSP.1987.1165195

    Article  Google Scholar 

  43. 43.

    Chen J, Benesty J, Huang Y(Arden): Performance of GCC- and AMDF-based time-delay estimation in practical reverberant environments. EURASIP Journal on Applied Signal Processing 2005, 2005(1):25–36. 10.1155/ASP.2005.25

    MATH  Google Scholar 

  44. 44.

    Carter GC, Nuttall AH, Cable PG: The smoothed coherence transform. Proceedings of the IEEE 1973, 61(10):1497–1498.

    Article  Google Scholar 

  45. 45.

    Roth PR: Effective measurements using digital signal analysis. IEEE Spectrum 1971, 8(4):62–70.

    Article  Google Scholar 

  46. 46.

    Wang H, Chu P: Voice source localization for automatic camera pointing system in video conferencing. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), April 1997, Munich, Germany 1: 187–190.

    Google Scholar 

  47. 47.

    Feintuch PL, Bershad NJ, Reed FA: Time delay estimation using the LMS adaptive filter—dynamic behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):571–576. 10.1109/TASSP.1981.1163608

    Article  Google Scholar 

  48. 48.

    Haykin S: Radar array processing for angle of arrival estimation. In Array Signal Processing. Edited by: Haykin S. Prentice-Hall, Englewood Cliffs, NJ, USA; 1985:194–292.

    Google Scholar 

  49. 49.

    Kirlin RL, Moore DF, Kubichek RF: Improvement of delay measurements from sonar arrays via sequential state estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):514–519. 10.1109/TASSP.1981.1163612

    Article  Google Scholar 

  50. 50.

    Nishiura T, Yamada T, Nakamura S, Shikano K: Localization of multiple sound sources based on a CSP analysis witha microphone array. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 2: 1053–1055.

    Google Scholar 

  51. 51.

    Griebel SM, Brandstein MS: Microphone array source localization using realizable delay vectors. Proceedings of IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (WASPAA '01), October 2001, New Platz, NY, USA 71–74.

    Google Scholar 

  52. 52.

    DiBiase JH, Silverman HF, Branstein MS: Robust localization in reverberant rooms. In Microphone Arrays: Signal Processing Techniques and Applications. Edited by: Branstein MS, Ward DB. Springer, New York, NY, USA; 2001:157–180. chapter 8

    Google Scholar 

  53. 53.

    Chen J, Benesty J, Huang Y(Arden): Robust time delay estimation exploiting redundancy among multiple microphoens. IEEE Transactions on Speech and Audio Processing 2003, 11(6):549–557. 10.1109/TSA.2003.818025

    Article  Google Scholar 

  54. 54.

    Benesty J, Chen J, Huang Y(Arden): Time-delay estimation via linear interpolation and cross correlation. IEEE Transactions on Speech and Audio Processing 2004, 12(5):509–519. 10.1109/TSA.2004.833008

    Article  Google Scholar 

  55. 55.

    Huang Y(Arden), Benesty J, Elko GW: Adaptive eigenvalue decomposition algorithm for real time acoustic source localization system. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '99), March 1999, Phoenix, Ariz, USA 2: 937–940.

    Google Scholar 

  56. 56.

    Xu G, Liu H, Tong L, Kailath T: A least-squares approach to blind channel identification. IEEE Transactions on Signal Processing 1995, 43(12):2982–2993. 10.1109/78.476442

    Article  Google Scholar 

  57. 57.

    Chen H-F, Cao X-R, Zhu J: Convergence of stochastic-approximation-based algorithms for blind channel identification. IEEE Transactions on Information Theory 2002, 48(5):1214–1225. 10.1109/18.995653

    MathSciNet  Article  Google Scholar 

  58. 58.

    Gürelli Mİ, Nikias CL: EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals. IEEE Transactions on Signal Processing 1995, 43(1):134–149. 10.1109/78.365293

    Article  Google Scholar 

  59. 59.

    Tong L, Perreau S: Multichannel blind identification: from subspace to maximum likelihood methods. Proceedings of the IEEE 1998, 86(10):1951–1968. 10.1109/5.720247

    Article  Google Scholar 

  60. 60.

    Huang Y(Arden), Benesty J: Adaptive multi-channel least mean square and Newton algorithms for blind channel identification. Signal Processing 2002, 82(8):1127–1138. 10.1016/S0165-1684(02)00247-5

    Article  Google Scholar 

  61. 61.

    Sorensen HV, Jones DL, Heideman MT, Burrus CS: Real-valued fast Fourier transform algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987, 35(6):849–863. 10.1109/TASSP.1987.1165220

    Article  Google Scholar 

  62. 62.

    Fox L: An Introduction to Numerical Linear Algebra. Clarendon Press, Oxford, UK; 1964.

    Google Scholar 

  63. 63.

    Boucher RE, Hassab JC: Analysis of discrete implementation of generalized cross correlator. IEEE Transactions on Acoustics, Speech, and Signal Processing 1981, 29(3):609–611. 10.1109/TASSP.1981.1163623

    Article  Google Scholar 

  64. 64.

    Moddemeijer R: On the determination of the position of extrema of sampled correlators. IEEE Transactions on Signal Processing 1991, 39(1):216–219. 10.1109/78.80788

    Article  Google Scholar 

  65. 65.

    Allen JB, Berkley DA: Image method for efficiently simulating small-room acoustics. Journal of the Acoustical Society of America 1979, 65(4):943–950. 10.1121/1.382599

    Article  Google Scholar 

  66. 66.

    Champagne B, Bedard S, Stephenne A: Performance of time-delay estimation in the presence of room reverberation. IEEE Transactions on Speech and Audio Processing 1996, 4(2):148–152. 10.1109/89.486067

    Article  Google Scholar 

  67. 67.

    Gustafsson T, Rao BD, Trivedi M: Source localization in reverberant environments: modeling and statistical analysis. IEEE Transactions on Speech and Audio Processing 2003, 11(6):791–803. 10.1109/TSA.2003.818027

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingdong Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Benesty, J. & Huang, Y. Time Delay Estimation in Room Acoustic Environments: An Overview. EURASIP J. Adv. Signal Process. 2006, 026503 (2006). https://doi.org/10.1155/ASP/2006/26503

Download citation

Keywords

  • Radar
  • Geophysics
  • Research Topic
  • Quantum Information
  • Sonar