Skip to content


  • Research Article
  • Open Access

Time of Arrival Estimation for UWB Localizers in Realistic Environments

EURASIP Journal on Advances in Signal Processing20062006:032082

  • Received: 14 June 2005
  • Accepted: 30 April 2006
  • Published:


This paper investigates time of arrival (ToA) estimation methods for ultra-wide bandwidth (UWB) propagation signals. Different algorithms are implemented in order to detect the direct path in a dense multipath environment. Different suboptimal, low-complex techniques based on peak detection are used to deal with partial overlap of signal paths. A comparison in terms of ranging accuracy, complexity, and parameters sensitivity to propagation conditions is carried out also considering a conventional technique based on threshold detection. In particular, the algorithms are tested on experimental data collected from a measurement campaign performed in a typical office building.


  • Propagation Signal
  • Quantum Information
  • Threshold Detection
  • Direct Path
  • Parameter Sensitivity


Authors’ Affiliations

Dipartimento di Elettronica e Telecomunicazioni, Universitàdegli studi di Firenze, Via Santa Marta 3, Firenze, 50139, Italy
The WiLAB, IEIIT/CNR, CNIT, Università di Bologna, Via Venezia 52, 47023 Cesena, Italy
Dipartimento di Elettronica e Telecomunicazioni, CNIT, Università degli studi di Firenze, Via Santa Marta 3, Firenze, 50139, Italy
Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology, Room 32-D658, 77 Massachusetts Avenue, Cambridge, MA 02139, USA


  1. Win MZ: A unified spectral analysis of generalized time-hopping spread-spectrum signals in the presence of timing jitter. IEEE Journal on Selected Areas in Communications 2002, 20(9):1664-1676. 10.1109/JSAC.2002.805030View ArticleGoogle Scholar
  2. Win MZ, Scholtz RA: Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 2000, 48(4):679-689. 10.1109/26.843135View ArticleGoogle Scholar
  3. Win MZ, Scholtz RA: Impulse radio: how it works. IEEE Communications Letters 1998, 2(2):36-38. 10.1109/4234.660796View ArticleGoogle Scholar
  4. Win MZ, Scholtz RA: On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters 1998, 2(2):51-53. 10.1109/4234.660801View ArticleGoogle Scholar
  5. Cassioli D, Win MZ, Molisch AF: The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE Journal on Selected Areas in Communications 2002, 20(6):1247-1257. 10.1109/JSAC.2002.801228View ArticleGoogle Scholar
  6. Chong C-C, Yong SK: A generic statistical-based UWB channel model for high-rise apartments. IEEE Transactions on Antennas and Propagation 2005, 53(8):2389-2399.View ArticleGoogle Scholar
  7. Chong C-C, Kim Y-E, Yong SK, Lee S-S: Statistical characterization of the UWB propagation channel in indoor residential environment. Wireless Communications and Mobile Computing 2005, 5(5):503-512. 10.1002/wcm.310View ArticleGoogle Scholar
  8. Pahlavan K, Li X, Mäkelä J-P: Indoor geolocation science and technology. IEEE Communications Magazine 2002, 40(2):112-118. 10.1109/35.983917View ArticleGoogle Scholar
  9. Fontana RJ, Gunderson SJ: Ultra-wideband precision asset location system. Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies, May 2002, Baltimore, Md, USA 147-150.Google Scholar
  10. Dardari D: Pseudo-random active UWB reflectors for accurate ranging. IEEE Communication Letters 2004, 8(10):608-610. 10.1109/LCOMM.2004.836838View ArticleGoogle Scholar
  11. Yu K, Oppermann I: Performance of UWB position estimation based on time-of-arrival measurements. Proceedings of International Workshop on Ultra Wideband Systems; Joint with Conference on Ultrawideband Systems and Technologies (Joint UWBST & IWUWBS '04), May 2004, Kyoto, Japan 400-404.Google Scholar
  12. Win MZ, Scholtz RA: Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view. IEEE Journal on Selected Areas in Communications 2002, 20(9):1613-1627. 10.1109/JSAC.2002.805031View ArticleGoogle Scholar
  13. Lottici V, D'Andrea A, Mengali U: Channel estimation for ultra-wideband communications. IEEE Journal on Selected Areas in Communications 2002, 20(9):1638-1645. 10.1109/JSAC.2002.805053View ArticleGoogle Scholar
  14. Boujemaa H, Siala M: On a maximum likelihood delay acquisition algorithm. Proceedings of IEEE International Conference on Communications (ICC '01), June 2001, Helsinki, Finland 8: 2510-2514.Google Scholar
  15. Lee J-Y, Scholtz RA: Ranging in a dense multipath environment using an UWB radio link. IEEE Journal on Selected Areas in Communications 2002, 20(9):1677-1683. 10.1109/JSAC.2002.805060View ArticleGoogle Scholar
  16. Dumont L, Fattouche M, Morrison G: Super-resolution of multipath channels in a spread spectrum location system. Electronics Letters 1994, 30(19):1583-1584. 10.1049/el:19941094View ArticleGoogle Scholar
  17. Li X, Pahlavan K: Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications 2004, 3(1):224-234. 10.1109/TWC.2003.819035View ArticleGoogle Scholar
  18. Jàtiva ER, Vidal J: First arrival detection for positioning in mobile channels. Proceedings of 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '02), September 2002, Lisbon, Portugal 4: 1540-1544.View ArticleGoogle Scholar
  19. Maravic I, Vetterli M: Low-complexity subspace methods for channel estimation and synchronization in ultrawideband systems. Proceedings of International Workshop on Ultra Wideband Systems (IWUWB '03), June 2003, Oulu, Finland 1-5.Google Scholar
  20. Suwansantisuk W, Win MZ, Shepp LA: On the performance of wide-bandwidth signal acquisition in dense multipath channels. IEEE Transactions on Vehicular Technology 2005, 54(5):1584-1594. 10.1109/TVT.2005.856196View ArticleGoogle Scholar
  21. Jeong Y, You H, Lee C: Calibration of NLOS error for positioning systems. Proceedings of IEEE 53rd Vehicular Technology Conference (VTC '01), May 2001, Rhodes, Greece 4: 2605-2608.View ArticleGoogle Scholar
  22. Chen P-C: A non-line-of-sight error mitigation algorithm in location estimation. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '99), September 1999, New Orleans, La, USA 1: 316-320.Google Scholar
  23. Denis B, Keignart J, Daniele N: Impact of NLOS propagation upon ranging precision in UWB systems. Proceedings of IEEE Conference on Ultra Wideband Systems and Technologies (UWBST '03), November 2003, Reston, Va, USA 379-383.Google Scholar
  24. Wylie-Green MP, Wang SS: Robust range estimation in the presence of the non-line-of-sight error. Proceedings of IEEE 54th Vehicular Technology Conference (VTC '01), May 2001, Rhodes, Greece 1: 101-105.Google Scholar
  25. Dardari D, Chong C-C, Win MZ: Analysis of threshold-based TOA estimators in UWB channels. Proceedings of 14th European Signal Processing Conference (EUSIPCO '06), September 2006, Florence, ItalyGoogle Scholar
  26. Guvenc I, Sahinoglu Z: Threshold-based TOA estimation for impulse radio UWB systems. Proceedings of IEEE International Conference on Ultra-Wideband (ICU '05), September 2005, Zurich, Switzerland 420-425.Google Scholar
  27. Ianniello JP: Large and small error performance limits for multipath time delay estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986, 34(2):245-251. 10.1109/TASSP.1986.1164820View ArticleGoogle Scholar
  28. Van Trees Hl: Detection, Estimation and Modulation Theory. John Wiley & Sons, New York, NY, USA; 2001.View ArticleMATHGoogle Scholar
  29. Win MZ, Scholtz RA: On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters 1998, 2(9):245-247. 10.1109/4234.718491View ArticleGoogle Scholar


© Falsi et al. 2006