Skip to main content

A Novel Efficient Cluster-Based MLSE Equalizer for Satellite Communication Channels with-QAM Signaling


In satellites, nonlinear amplifiers used near saturation severely distort the transmitted signal and cause difficulties in its reception. Nevertheless, the nonlinearities introduced by memoryless bandpass amplifiers preserve the symmetries of the-ary quadrature amplitude modulation (-QAM) constellation. In this paper, a cluster-based sequence equalizer (CBSE) that takes advantage of these symmetries is presented. The proposed equalizer exhibits enhanced performance compared to other techniques, including the conventional linear transversal equalizer, Volterra equalizers, and RBF network equalizers. Moreover, this gain in performance is obtained at a substantially lower computational cost.


  1. 1.

    Maral G, Bousquet M: Satellite Communication Systems. John Wiley & Sons, New York, NY, USA; 1996.

    Google Scholar 

  2. 2.

    Ibnkahla M, Rahman QM, Sulyman AI, Al-Asady HA, Yuan J, Safwat A: High-speed satellite mobile communications: technologies and challenges. Proceedings of the IEEE 2004, 92(2):312–338. 10.1109/JPROC.2003.821907

    Article  Google Scholar 

  3. 3.

    Xiong F: Modem techniques in satellite communications. IEEE Communications Magazine 1994, 32(8):84–98. 10.1109/35.299842

    Article  Google Scholar 

  4. 4.

    Biglieri E, Gersho A, Gitlin RD, Lim TL: Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission. IEEE Journal on Selected Areas in Communications 1984, 2(5):765–777. 10.1109/JSAC.1984.1146107

    Article  Google Scholar 

  5. 5.

    Bouchired S, Roviras D, Castanié F: Equalization of satellite mobile channels with neural network techniques. Space Communications 1999, 15(4):209–220.

    Google Scholar 

  6. 6.

    Langlet F, Abdulkader H, Roviras D, Mallet A, Castanié F: Comparison of neural network adaptive predistortion techniques for satellite down links. Proceedings of the International Joint Conference on Neural Networks (IJCNN '01), July 2001, Washington, DC, USA 1: 709–714.

    Article  Google Scholar 

  7. 7.

    Langlet F, Roviras D, Mallet A, Castanié F: Mixed analog/digital implementation of MLP NN for predistortion. Proceedings of the International Joint Conference on Neural Networks (IJCNN '02), May 2002, Honolulu, Hawaii, USA 3: 2825–2830.

    Google Scholar 

  8. 8.

    Langlet F, Abdulkader H, Roviras D: Predistortion of non-linear satellite channels using neural networks: architecture, algorithm and implementation. Proceedings of the 11th European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France

    Google Scholar 

  9. 9.

    Haykin S: Neural Networks: A Comprehensive Foundation. 2nd edition. Prentice-Hall, Upper Saddle River, NJ, USA; 1999.

    Google Scholar 

  10. 10.

    Gutierrez A, Ryan WE: Performance of adaptive Volterra equalizers on nonlinear satellite channels. IEEE International Conference on Communications (ICC '95), June 1995, Seattle, Wash, USA 1: 488–492.

    Article  Google Scholar 

  11. 11.

    Gutierrez A, Ryan WE: Performance of Volterra and MLSD receivers for nonlinear band-limited satellite systems. IEEE Transactions on Communications 2000, 48(7):1171–1177. 10.1109/26.855524

    Article  Google Scholar 

  12. 12.

    Benedetto S, Biglieri E, Daffara R: Modeling and performance evaluation of nonlinear satellite links—a Volterra series approach. IEEE Transactions on Aerospace and Electronic Systems 1979, 15(4):494-507.

    Article  Google Scholar 

  13. 13.

    Chang P-R, Wang B-C: Adaptive decision feedback equalization for digital satellite channels using multilayer neural networks. IEEE Journal on Selected Areas in Communications 1995, 13(2):316–324. 10.1109/49.345876

    Article  Google Scholar 

  14. 14.

    Chen S, Gibson GJ, Cowan CFN, Grant PM: Adaptive equalization of finite non-linear channels using multilayer perceptrons. Signal Processing 1990, 20(2):107–119. 10.1016/0165-1684(90)90122-F

    Article  Google Scholar 

  15. 15.

    Cha I, Kassam SA: Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications 1995, 13(1):122–131. 10.1109/49.363139

    Article  Google Scholar 

  16. 16.

    Chen S, McLaughlin S, Mulgrew B: Complex-valued radial basis function network, part 1: network architecture and learning algorithms. Signal Processing 1994, 35(1):19–31. 10.1016/0165-1684(94)90187-2

    Article  Google Scholar 

  17. 17.

    Bouchired S, Ibnkahla M, Paquier W: A combined LMS-SOM algorithm for time varying non-linear channel equalization. Proceedings of the European Signal Processing Conference (EUSIPCO '98), September 1998, Rhodes, Greece

    Google Scholar 

  18. 18.

    Bouchired S, Ibnkahla M, Roviras D, Castanié F: Equalization of satellite mobile communication channels using combined self-organizing maps and RBF networks. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3377–3379.

    Google Scholar 

  19. 19.

    Kohonen T: Self-Organizing Maps. Springer, Berlin, Germany; 1995.

    Google Scholar 

  20. 20.

    Bouchired S, Ibnkahla M, Roviras D, Castanié F: Equalization of satellite UMTS channels using neural network devices. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '99), March 1999, Phoenix, Ariz, USA

    Google Scholar 

  21. 21.

    Saleh AAM: Frequency-independent and frequency dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications 1981, 29(11):1715–1720. 10.1109/TCOM.1981.1094911

    Article  Google Scholar 

  22. 22.

    Kopsinis Y, Theodoridis S: An efficient low-complexity technique for MLSE equalizers for linear and nonlinear channels. IEEE Transactions on Signal Processing 2003, 51(12):3236–3248. 10.1109/TSP.2003.818891

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kopsinis Y, Theodoridis S:A novel cluster based MLSE equalizer for-PAM signaling schemes. Signal Processing 2003, 83(9):1905–1918. 10.1016/S0165-1684(03)00108-7

    Article  Google Scholar 

  24. 24.

    Forney Jr GD: Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory 1972, 18(3):363–378. 10.1109/TIT.1972.1054829

    MathSciNet  Article  Google Scholar 

  25. 25.

    Chakraborty D: Maximum likelihood sequence detection in nonlinear satellite channels. IEEE Communications Magazine 1981, 19(6):47–53.

    Article  Google Scholar 

  26. 26.

    Benedetto S, Biglieri E, Castellani V: Digital Transmission Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 1987.

    Google Scholar 

  27. 27.

    Lowry P: System handbook, advanced communications technology satellite. In Tech. Rep. TM-101490. NASA, Lewis Research Center, Cleveland, Ohio, USA; 1993.

    Google Scholar 

  28. 28.

    ESA SkyPlex

  29. 29.

    Wittig M: Satellite onboard processing for multimedia applications. IEEE Communications Magazine 2000, 38(6):134–140. 10.1109/35.846085

    Article  Google Scholar 

  30. 30.

    Evans B, Werner M, Lutz E, et al.: Integration of satellite and terrestrial systems in future multimedia communications. IEEE Wireless Communications 2005, 12(5):72–80. 10.1109/MWC.2005.1522108

    Article  Google Scholar 

  31. 31.

    Ibnkahla M, Yuan J: A neural network MLSE receiver based on natural gradient descent: application to satellite communications. EURASIP Journal on Applied Signal Processing 2004, 2004(16):2580–2591. 10.1155/S1110865704405010

    MATH  Google Scholar 

  32. 32.

    Rapp C: Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting system. Proceedings of the 2nd European Conference on Satellite Communications (ECSC '91), October 1991, Liege, Belgium

    Google Scholar 

  33. 33.

    Weekley JM, Mangus BJ: TWTA versus SSPA: A comparison of on-orbit reliability data. IEEE Transactions on Electron Devices 2005, 52(5):650–652. 10.1109/TED.2005.845864

    Article  Google Scholar 

  34. 34.

    Berman AL, Mahle CE: Nonlinear phase shift in travelling wave as applied to multiple access communication satellites. IEEE Transactions on Communications Technology 1970, 198(1):37–48.

    Article  Google Scholar 

  35. 35.

    Minkoff JB: Wideband operation of nonlinear solid state power amplifiers—comparison of calculations and measurements. AT&T Bell Laboratories Technical Journal 1984, 63(2):231–248.

    Article  Google Scholar 

  36. 36.

    Mathews VJ: Adaptive polynomial filters. IEEE Signal Processing Magazine 1991, 8(3):10–26. 10.1109/79.127998

    Article  Google Scholar 

  37. 37.

    Benedetto S, Biglieri E: Nonlinear equalization of digital satellite channels. IEEE Journal on Selected Areas in Communications 1983, 1(1):57–62. 10.1109/JSAC.1983.1145885

    Article  Google Scholar 

  38. 38.

    Chen S, Mulgrew B, McLaughlin S: Adaptive Bayesian equalizer with decision feedback. IEEE Transactions on Signal Processing 1993, 41(9):2918–2926. 10.1109/78.236513

    Article  Google Scholar 

  39. 39.

    Chen S, McLaughlin S, Mulgrew B: Complex-valued radial basis function network, part II: application to digital communications channel equalisation. Signal Processing 1994, 36(2):175–188. 10.1016/0165-1684(94)90206-2

    Article  Google Scholar 

  40. 40.

    Haykin S: Adaptive Filter Theory. 3rd edition. Prentice-Hall, Upper Saddle River, NJ, USA; 1996.

    Google Scholar 

  41. 41.

    Hanzo L, Wong CH, Yee MS: Adaptive Wireless Transceivers. John Wiley & Sons, Chichester, UK; 2002.

    Google Scholar 

  42. 42.

    Steele R, Hanzo L: Mobile Radio Communications. 2nd edition. John Wiley & Sons, Chichester, UK; 2000.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eleftherios Kofidis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kofidis, E., Dalakas, V., Kopsinis, Y. et al. A Novel Efficient Cluster-Based MLSE Equalizer for Satellite Communication Channels with-QAM Signaling. EURASIP J. Adv. Signal Process. 2006, 034343 (2006).

Download citation


  • Information Technology
  • Computational Cost
  • Quantum Information
  • Amplitude Modulation
  • Communication Channel