Skip to main content

A Framework for Advanced Video Traces: Evaluating Visual Quality for Video Transmission Over Lossy Networks


Conventional video traces (which characterize the video encoding frame sizes in bits and frame quality in PSNR) are limited to evaluating loss-free video transmission. To evaluate robust video transmission schemes for lossy network transport, generally experiments with actual video are required. To circumvent the need for experiments with actual videos, we propose in this paper an advanced video trace framework. The two main components of this framework are (i) advanced video traces which combine the conventional video traces with a parsimonious set of visual content descriptors, and (ii) quality prediction schemes that based on the visual content descriptors provide an accurate prediction of the quality of the reconstructed video after lossy network transport. We conduct extensive evaluations using a perceptual video quality metric as well as the PSNR in which we compare the visual quality predicted based on the advanced video traces with the visual quality determined from experiments with actual video. We find that the advanced video trace methodology accurately predicts the quality of the reconstructed video after frame losses.


  1. 1.

    Narasimha R, Rao R: Modeling variable bit rate video on wired and wireless networks using discrete-time self-similar systems. Proceedings of IEEE International Conference on Personal Wireless Communications (ICPWC '02), December 2002, New Delhi, India 290–294.

    Google Scholar 

  2. 2.

    Bhattacharya A, Parlos AG, Atiya AF: Prediction of MPEG-coded video source traffic using recurrent neural networks. IEEE Transactions on Signal Processing 2003, 51(8):2177–2190. 10.1109/TSP.2003.814470

    Article  Google Scholar 

  3. 3.

    Fitzek FHP, Reisslein M: MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network 2001, 15(6):40–54. 10.1109/65.967596

    Article  Google Scholar 

  4. 4.

    Seeling P, Reisslein M, Kulapala B: Network performance evaluation using frame size and quality traces of single-layer and two-layer video: a tutorial. IEEE Communications Surveys and Tutorials 2004, 6(3):58–78.

    Article  Google Scholar 

  5. 5.

    Valaee S, Gregoire J-C: Resource allocation for video streaming in wireless environment. Proceedings of the 5th International Symposium on Wireless Personal Multimedia Communications (WPMC '02), October 2002, Honolulu, Hawaii, USA 3: 1103–1107.

    Article  Google Scholar 

  6. 6.

    Kanjanavapastit A, Mehrpour H: Packet reservation multiple access for multimedia traffic. Proceedings of 10th IEEE International Conference on Networks (ICON '02), 2002, Singapore 162–166.

    Google Scholar 

  7. 7.

    Watson AB, Hu J, McGowan JF III: Digital video quality metric based on human vision. Journal of Electronic Imaging 2001, 10(1):20–29. 10.1117/1.1329896

    Article  Google Scholar 

  8. 8.

    He Z, Chen CW: End-to-end video quality analysis and modeling for video streaming over IP network. Proceedings of IEEE International Conference on Multimedia and Expo (ICME '02), 2002, Lausanne, Switzerland 1: 853–856.

  9. 9.

    Wang Y, Zhu Q-F: Error control and concealment for video communication: a review. Proceedings of the IEEE 1998, 86(5):974–997. 10.1109/5.664283

    Article  Google Scholar 

  10. 10.

    Reibman AR, Vaishampayan VA, Sermadevi Y: Quality monitoring of video over a packet network. IEEE Transactions on Multimedia 2004, 6(2):327–334. 10.1109/TMM.2003.822785

    Article  Google Scholar 

  11. 11.

    Kanumuri S, Cosman P, Reibman AR: A generalized linear model for MPEG-2 packet-loss visibility. Proceedings of 14th International Packet Video Workshop (PV '04), December 2004, Irvine, Calif, USA

    Google Scholar 

  12. 12.

    Liang YJ, Apostolopoulos JG, Girod B: Analysis of packet loss for compressed video: does burst-length matter? Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong 5: 684–687.

    Google Scholar 

  13. 13.

    Masry M, Hemami SS: Perceived quality metrics for low bit rate compressed video. Proceedings of IEEE International Conference on Image Processing (ICIP '02), 2002, Rochester, NY, USA 3: 49–52.

  14. 14.

    Duffield NG, Ramakrishnan KK, Reibman AR: Issues of quality and multiplexing when smoothing rate adaptive video. IEEE Transactions on Multimedia 1999, 1(4):352–364. 10.1109/6046.807955

    Article  Google Scholar 

  15. 15.

    Verscheure O, Garcia X, Karlsson G, Hubaux J-P: User-oriented QoS in packet video delivery. IEEE Network 1998, 12(6):12–21. 10.1109/65.752641

    Article  Google Scholar 

  16. 16.

    ITU-T Recommendation P.910, "Subjective video quality assessment methods for multimedia applications ", Recommendations of the ITU, Telecommunication Standardization Sector, approved in September 1999

  17. 17.

    Jeannin S, Divakaran A: MPEG-7 visual motion descriptors. IEEE Transactions on Circuits and Systems for Video Technology 2001, 11(6):720–724. 10.1109/76.927428

    Article  Google Scholar 

  18. 18.

    Boreczky JS, Rowe LA: Comparison of video shot boundary detection techniques. Storage and Retrieval for Still Images and Video Databases IV, 1996, San Jose, Calif, USA, Proceedings of SPIE 2664: 170–179.

    Article  Google Scholar 

  19. 19.

    Peker KA, Divakaran A: Framework for measurement of the intensity of motion activity of video segments. Journal of Visual Communication and Image Representation 2004, 15(3):265–284. 10.1016/j.jvcir.2004.04.007

    Article  Google Scholar 

  20. 20.

    Hogg RV, Craig AT: Introduction to Mathematical Statistics. 5th edition. Macmillan, New York, NY, USA; 1995.

    MATH  Google Scholar 

  21. 21.

    Lehmann EL, D'Abrera HJM: Nonparametrics: Statistical Methods Based on Ranks. rev. edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 1998.

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Osama A. Lotfallah.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Lotfallah, O.A., Reisslein, M. & Panchanathan, S. A Framework for Advanced Video Traces: Evaluating Visual Quality for Video Transmission Over Lossy Networks. EURASIP J. Adv. Signal Process. 2006, 042083 (2006).

Download citation


  • Video Quality
  • Visual Quality
  • Transmission Scheme
  • Video Transmission
  • Prediction Scheme