Skip to main content

Frequency-Shift Zero-Forcing Time-Varying Equalization for Doubly Selective SIMO Channels

Abstract

This paper deals with the problem of designing linear time-varying (LTV) finite-impulse response zero-forcing (ZF) equalizers for time- and frequency-selective (so-called doubly selective) single-input multiple-output (SIMO) channels. Specifically, relying on a basis expansion model (BEM) of the rapidly time-varying channel impulse response, we derive the canonical frequency-domain representation of the minimal norm LTV-ZF equalizer, which allows one to implement it as a parallel bank of linear time-invariant filters having, as input signals, different frequency-shift (FRESH) versions of the received data. Moreover, on the basis of this FRESH representation, we propose a simple and effective low-complexity version of the minimal norm LTV-ZF equalizer and we discuss the relationships between the devised FRESH equalizers and a LTV-ZF equalizer recently proposed in the literature. The performance analysis, carried out by means of computer simulations, shows that the proposed FRESH-LTV-ZF equalizers significantly outperform their competitive alternative.

References

  1. 1.

    Giannakis GB, Tepedelenlioğlu C: Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proceedings of the IEEE 1998, 86(10):1969–1986. 10.1109/5.720248

    Article  Google Scholar 

  2. 2.

    Tsatsanis MK, Giannakis GB: Modeling and equalizing of rapidly fading channels. International Journal of Adaptive Control and Signal Processing 1998, 159–176.

    Google Scholar 

  3. 3.

    Sayeed AM, Aazhang B: Joint multipath-doppler diversity in mobile wireless communications. IEEE Transactions on Communications 1999, 47(1):123–132. 10.1109/26.747819

    Article  Google Scholar 

  4. 4.

    Ma X, Giannakis GB: Maximum-diversity transmissions over doubly selective wireless channels. IEEE Transactions on Information Theory 2003, 49(7):1832–1840. 10.1109/TIT.2003.813485

    MathSciNet  Article  Google Scholar 

  5. 5.

    Leus G, Zhou S, Giannakis GB: Orthogonal multiple access over time- and frequency-selective channels. IEEE Transactions on Information Theory 2003, 49(8):1942–1950. 10.1109/TIT.2003.814477

    MathSciNet  Article  Google Scholar 

  6. 6.

    Leus G, Barhumi I, Moonen M: Low-complexity serial equalization of doubly-selective channels. In Proceedings of the 6th Baiona Workshop on Signal Processing in Communications, September 2003. Baiona, Spain; 69–74.

    Google Scholar 

  7. 7.

    Tepedelenlioğlu C, Giannakis GB: Transmitter redundancy for blind estimation and equalization of time- and frequency-selective channels. IEEE Transactions on Signal Processing 2000, 48(7):2029–2043. 10.1109/78.847788

    Article  Google Scholar 

  8. 8.

    Jakes WC: Microwave Mobile Channels. John Wiley & Sons, New York, NY, USA; 1974.

    Google Scholar 

  9. 9.

    Barhumi I, Leus G, Moonen M: Time-varying FIR equalization for doubly selective channels. IEEE Transactions on Wireless Communications 2005, 4(1):202–214.

    Article  Google Scholar 

  10. 10.

    Tugnait JK, Luo W: Linear prediction error method for blind identification of periodically time-varying channels. IEEE Transactions on Signal Processing 2002, 50(12):3070–3082. 10.1109/TSP.2002.805493

    Article  Google Scholar 

  11. 11.

    Franks L: Polyperiodic linear filtering. In Cyclostationarity in Communications and Signal Processing. Edited by: Gardner WA. IEEE Press, Piscataway, NJ, USA; 1994:240–266.

    Google Scholar 

  12. 12.

    Ben-Israel A, Greville TNE: Generalized Inverses. Springer, New York, NY, USA; 2002.

    Google Scholar 

  13. 13.

    Bello PA: Characterization of randomly time-variant channels. IEEE Transactions on Communications 1963, 11(4):360–393. 10.1109/TCOM.1963.1088793

    Article  Google Scholar 

  14. 14.

    Tugnait JK, Luo W: Blind identification of time-varying channels using multistep linear predictors. IEEE Transactions on Signal Processing 2004, 52(6):1739–1749. 10.1109/TSP.2004.827174

    Article  Google Scholar 

  15. 15.

    Luo W, Tugnait JK: Semi-blind time-varying channel estimation using superimposed training. Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), May 2004, Montreal, Canada 797–800.

    Google Scholar 

  16. 16.

    Leus G: On the estimation of rapidly time-varying channels. Proceedings of the European Signal Processing Conference, September 2004, Vienna, Austria 120–123.

    Google Scholar 

  17. 17.

    Proakis JG: Digital Communications. McGraw-Hill, New York, NY, USA; 2001.

    Google Scholar 

  18. 18.

    Tong L, Perreau S: Multichannel blind identification: from subspace to maximum likelihood methods. Proceeedings of the IEEE 1998, 86(10):1951–1968. 10.1109/5.720247

    Article  Google Scholar 

  19. 19.

    Horn RA, Johnson CR: Matrix Analysis. Cambridge University Press, Cambridge, UK; 1990.

    Google Scholar 

  20. 20.

    Vescovo R: Inversion of block-circulant matrices and circular array approach. IEEE Transactions on Antennas and Propagation 1997, 45(10):1565–1567. 10.1109/8.633869

    MathSciNet  Article  Google Scholar 

  21. 21.

    Björck A: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, Pa, USA; 1996.

    Google Scholar 

  22. 22.

    Serpedin E, Giannakis GB: A simple proof of a known blind channel identifiability result. IEEE Transactions on Signal Processing 1999, 47(2):591–593. 10.1109/78.740150

    Article  Google Scholar 

  23. 23.

    Honig M, Madhow U, Verdù S: Blind adaptive multiuser detection. IEEE Transactions on Information Theory 1995, 41(4):944–960. 10.1109/18.391241

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Verde.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verde, F. Frequency-Shift Zero-Forcing Time-Varying Equalization for Doubly Selective SIMO Channels. EURASIP J. Adv. Signal Process. 2006, 047261 (2006). https://doi.org/10.1155/ASP/2006/47261

Download citation

Keywords

  • Information Technology
  • Computer Simulation
  • Input Signal
  • Performance Analysis
  • Impulse Response