Skip to main content

An Efficient Circulant MIMO Equalizer for CDMA Downlink: Algorithm and VLSI Architecture


We present an efficient circulant approximation-based MIMO equalizer architecture for the CDMA downlink. This reduces the direct matrix inverse (DMI) of size with complexity to some FFT operations with complexity and the inverse of some submatrices. We then propose parallel and pipelined VLSI architectures with Hermitian optimization and reduced-state FFT for further complexity optimization. Generic VLSI architectures are derived for the high-order receiver from partitioned submatrices. This leads to more parallel VLSI design with further complexity reduction. Comparative study with both the conjugate-gradient and DMI algorithms shows very promising performance/complexity tradeoff. VLSI design space in terms of area/time efficiency is explored extensively for layered parallelism and pipelining with a Catapult C high-level-synthesis methodology.


  1. 1.

    Gesbert D, Shafi M, Shiu D, Smith PJ, Naguib A: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 2003, 21(3):281–302. 10.1109/JSAC.2003.809458

    Article  Google Scholar 

  2. 2.

    Golden GD, Foschini CJ, Valenzuela RA, Wolniansky PW: Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters 1999, 35(1):14–16. 10.1049/el:19990058

    Article  Google Scholar 

  3. 3.

    Foschini GJ: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal 1996, 1(2):41–59.

    Article  Google Scholar 

  4. 4.

    Holma H, Toskala A: Wideband CDMA for UMTS. John Wiley & Sons, New York, NY, USA; 2000.

    Google Scholar 

  5. 5.

    Wiesel A, García L, Vidal J, Pagès A, Fonollosa JR: Turbo linear dispersion space time coding for MIMO HSDPA systems. Proceedings of 12th IST Summit on Mobile and Wireless Communications, June 2003, Aveiro, Portugal

    Google Scholar 

  6. 6.

    Hooli K, Juntti M, Heikkilä MJ, Komulainen P, Latva-aho M, Lilleberg J: Chip-level channel equalization in WCDMA downlink. EURASIP Journal on Applied Signal Processing 2002, 2002(8):757–770. 10.1155/S1110865702000914

    MATH  Google Scholar 

  7. 7.

    Das S, Sengupta C, Cavallaro JR: Hardware design issues for a mobile unit for next-generation CDMA systems. Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, July 1998, San Diego, Calif, USA, Proceedings of SPIE 3461: 476–487.

    Google Scholar 

  8. 8.

    Scharf LL: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley, New York, NY, USA; 1990.

    Google Scholar 

  9. 9.

    Kailath T, Chun J: Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM Journal on Matrix Analysis and Applications 1994, 15(1):114–128. 10.1137/S0895479889169042

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chandrasekarnan S, Sayed AH: Stablizing the generalized schur algorithm. SIAM Journal on Matrix Analysis and Applications 1996, 17(4):950–983. 10.1137/S0895479895287419

    MathSciNet  Article  Google Scholar 

  11. 11.

    Heikkila MJ, Ruotsalainen K, Lilleberg J: Space-time equalization using conjugate-gradient algorithm in WCDMA downlink. Proceedings of 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '02), September 2002, Lisbon, Portugal 2: 673–677.

    Article  Google Scholar 

  12. 12.

    Jevic FR, Cavallaro JR, de Baynast A: ASIP architecture implementation of channel equalization algorithms for MIMO systems in WCDMA downlink. Proceedings of 60th IEEE Vehicular Technology Conference (VTC '04), September 2004, Los Angeles, Calif, USA 3: 1735–1739.

    Google Scholar 

  13. 13.

    Guo Y, Xu G, McCain D, Cavallaro JR: Rapid scheduling of efficient VLSI architectures for next-generation HSDPA wireless system using Precision C synthesizer. Proceedings of 14th IEEE International Workshop on Rapid Systems Prototyping (RSP '03), June 2003, San Diego, Calif, USA 179–185.

    Google Scholar 

  14. 14.,,53713,00.html

  15. 15.

    Wrolstad J: Bell Labs BLASTs New High-Speed Wireless Chips. Wireless NewsFactor, Los Angeles, Calif, USA; 2002.

    Google Scholar 

  16. 16.

    Guo Z, Edman F, Nilsson P, Ovall V: On VLSI implementations of MIMO detectors for future wireless communications. Proceedings of 1st IST-MAGNET Workshop, November 2004, Shanghai, China

    Google Scholar 

  17. 17.

    Guo Y, McCain D, Zhang J, Cavallaro JR: Scalable FPGA architectures for LMMSE-based SIMO chip equalizer in HSDPA downlink. Proceedings of 37th Asilomar Conference on Signals, Systems and Computers, November 2003, Monterey, Calif, USA 2: 2171–2175.

    Google Scholar 

  18. 18.

    Evans A, Silburt A, Vrckovnik G, et al.: Functional verification of large ASICs. Proceedings of 35th ACM/IEEE Design Automation Conference (DAC '98), June 1998, San Francisco, Calif, USA 650–655.

    Google Scholar 

  19. 19.

    Bellows P, Hutchings B: JHDL-An HDL for reconfigurable systems. In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, April 1998, Napa Valley, Calif, USA. IEEE Computer Society Press; 175–184.

    Google Scholar 

  20. 20.

    Guo Y, Zhang J, McCain D, Cavallaro JR: Efficient MIMO equalization for downlink multi-code CDMA: complexity optimization and comparative study. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM~'04), November 2004, Dallas, Tex, USA 4: 2513–2519.

    Article  Google Scholar 

  21. 21.

    Rajagopal S, Jones BA, Cavallaro JR: Task partitioning wireless base-station receiver algorithms on multiple DSPs and FPGAs. Proceedings of International Conference on Signal Processing Applications and Technology (ICSPAT '00), October 2000, Dallas, Tex, USA

    Google Scholar 

  22. 22.

    Horn RA, Johnson CR: Matrix Analysis. Cambridge University Press, New York, NY, USA; 1985.

    Google Scholar 

  23. 23.

    Kermoal JP, Schumacher L, Pedersen KI, Mogensen PE, Frederiksen F: A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas in Communications 2002, 20(6):1211–1226. 10.1109/JSAC.2002.801223

    Article  Google Scholar 

  24. 24.

    Nguyen H, Zhang J, Raghothaman B: A Kalman-filter approach to equalization of CDMA downlink channels. EURASIP Journal on Applied Signal Processing 2005, 2005(5):611–625. 10.1155/ASP.2005.611

    MATH  Google Scholar 

  25. 25.

    Burg A, Rupp M, Guillaud M, et al.: FPGA implementation of a MIMO receiver front-end for the UMTS downlink. Proceedings of International Zurich Seminar on Broadband Communications (IZS '02), February 2002, Zurich, Switzerland 8-1–8-6.

    Google Scholar 

  26. 26.

    Mentor Graphics : Catapult C Manual and C/C++ style guide. 2004.

    Google Scholar 

  27. 27.

    Knippin U: Early design evaluation in hardware and system prototyping for concurrent hardware/software validation in one environment. Proceedings of 13th IEEE International Workshop on Rapid System Prototyping (RSP '02), July 2002, Darmstadt, Germany

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yuanbin Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, Y., Zhang, J., McCain, D. et al. An Efficient Circulant MIMO Equalizer for CDMA Downlink: Algorithm and VLSI Architecture. EURASIP J. Adv. Signal Process. 2006, 057134 (2006).

Download citation


  • Information Technology
  • Quantum Information
  • Design Space
  • Matrix Inverse
  • Complexity Reduction