Open Access

Super-Resolution for Synthetic Zooming

  • Xin Li1
EURASIP Journal on Advances in Signal Processing20062006:058195

https://doi.org/10.1155/ASP/2006/58195

Received: 1 December 2004

Accepted: 4 March 2005

Published: 5 February 2006

Abstract

Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR) techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR) images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

[123456789101112131415161718192021222324252627282930]

Authors’ Affiliations

(1)
Lane Department of Computer Science and Electrica Engineering, West Virginia University

References

  1. Holst GC: CCD Arrays, Cameras and Displays. SPIE-International Society for Optical Engine, Bellingham, Wash, USA; 1998.Google Scholar
  2. Choi E, Choi J, Kang MG: Super-resolution approach to overcome physical limitations of imaging sensors: an overview. International Journal of Imaging Systems and Technology 2004, 14(2):36-46. Special issue on high resolution image reconstruction 10.1002/ima.20006View ArticleGoogle Scholar
  3. Farsiu S, Robinson D, Elad M, Milanfar P: Advances and challenges in super-resolution. International Journal of Imaging Systems and Technology 2004, 14(2):47-57. Special issue on high resolution image reconstruction 10.1002/ima.20007View ArticleGoogle Scholar
  4. Park SC, Park MK, Kang MG: Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 2003, 20(3):21-36. 10.1109/MSP.2003.1203207View ArticleGoogle Scholar
  5. Wen Y-W, Ng MK, Ching W-K: High-resolution image reconstruction from rotated and translated low-resolution images with multisensors. International Journal of Imaging Systems and Technology 2004, 14(2):75-83. Special issue on high resolution image reconstruction 10.1002/ima.20010View ArticleGoogle Scholar
  6. Nguyen N, Milanfar P, Golub G: A computationally efficient super-resolution image reconstruction algorithm. IEEE Transactions on Image Processing 2001, 10(4):573-583. 10.1109/83.913592MATHMathSciNetView ArticleGoogle Scholar
  7. Farsiu S, Robinson MD, Elad M, Milanfar P: Fast and robust multiframe super-resolution. IEEE Transactions on Image Processing 2004, 13(10):1327-1344. 10.1109/TIP.2004.834669View ArticleGoogle Scholar
  8. Patti AJ, Sezan MI, Murat Tekalp A: Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Transactions on Image Processing 1997, 6(8):1064-1076. 10.1109/83.605404View ArticleGoogle Scholar
  9. Schultz RR, Stevenson RL: Extraction of high-resolution frames from video sequences. IEEE Transactions on Image Processing 1996, 5(6):996-1011. 10.1109/83.503915View ArticleGoogle Scholar
  10. Alvarez LD, Mateos J, Molina R, Katsaggelos AK: High-resolution images from compressed low-resolution video: Motion estimation and observable pixels. International Journal of Imaging Systems and Technology 2004, 14(2):58-66. Special issue on high resolution image reconstruction 10.1002/ima.20008View ArticleGoogle Scholar
  11. Gunturk BK, Altunbasak Y, Mersereau RM: Super-resolution reconstruction of compressed video using transform-domain statistics. IEEE Transactions on Image Processing 2004, 13(1):33-43. 10.1109/TIP.2003.819221View ArticleGoogle Scholar
  12. Jin R, Qi Y, Hauptmann A: A probabilistic model for camera zoom detection. Proceedings of IEEE 16th International Conference on Pattern Recognition (ICPR '02), August 2002, Quebec City, Quebec, Canada 3: 859-862.Google Scholar
  13. Kingslake R: Applied Optics and Optical Engineering. Academic Press, New York, NY, USA; 1965.Google Scholar
  14. Lertrattanapanich S, Bose NK: High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Transactions on Image Processing 2002, 11(12):1427-1441. 10.1109/TIP.2002.806234MathSciNetView ArticleGoogle Scholar
  15. Osher S, Rudin LI: Feature-oriented image-enhancement using shock filters. SIAM Journal on Numerical Analysis 1990, 27(4):919-940. 10.1137/0727053MATHView ArticleGoogle Scholar
  16. Alvarez L, Mazorra L: Signal and image restoration using shock filters and anisotropic diffusion. SIAM Journal on Numerical Analysis 1994, 31(2):590-605. 10.1137/0731032MATHMathSciNetView ArticleGoogle Scholar
  17. El-Fallah AI, Ford GE: Mean curvature evolution and surface area scaling in image filtering. IEEE Transactions on Image Processing 1997, 6(5):750-753. 10.1109/83.568931View ArticleGoogle Scholar
  18. Brown LG: A survey of image registration techniques. ACM Computing Surveys 1992, 24(4):325-376. 10.1145/146370.146374View ArticleGoogle Scholar
  19. Murat Tekalp A: Digital Video Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 1995.Google Scholar
  20. Lowe DG: Object recognition from local scale-invariant features. Proceedings of IEEE 7th International Conference on Computer Vision (ICCV '99), September 1999, Kerkyra, Greece 2: 1150-1157.View ArticleGoogle Scholar
  21. Schmid C, Mohr R: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, 19(5):530-535. 10.1109/34.589215View ArticleGoogle Scholar
  22. Shi J, Tomasi C: Good features to track. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '94), June 1994, Seattle, Wash, USA 593-600.Google Scholar
  23. Yen C, Burt PJ, Xu X: Local correlation measures from motion analysis: a comparative study. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '82), June 1982, Las Vegas, Nev, USA 269-274.Google Scholar
  24. Gu Y-H, Tjahjadi T: Coarse-to-fine planar object identification using invariant curve features and B-spline modeling. Pattern Recognition 2000, 33(9):1411-1422. 10.1016/S0031-3203(99)00131-4MATHView ArticleGoogle Scholar
  25. Nelder JA, Mead R: A simplex method for function minimization. The Computer Journal 1965, 7(4):308-313.MATHView ArticleGoogle Scholar
  26. Alvarez L, Lions P-L, Morel J-M: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal on Numerical Analysis 1992, 29(3):845-866. 10.1137/0729052MATHMathSciNetView ArticleGoogle Scholar
  27. Catté F, Lions P-L, Morel J-M, Coll T: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 1992, 29(1):182-193. 10.1137/0729012MATHMathSciNetView ArticleGoogle Scholar
  28. Gilboa G, Sochen N, Zeevi YY: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing 2002, 11(7):689-703. 10.1109/TIP.2002.800883View ArticleGoogle Scholar
  29. Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990, 12(7):629-639. 10.1109/34.56205View ArticleGoogle Scholar
  30. Olver PJ, Sapiro G, Tannenbaum A: Affine invariant detection: edge maps, anisotropic diffusion, and active contours. Acta Applicandae Mathematicae 1999, 59(1):45-77. 10.1023/A:1006295328209MATHMathSciNetView ArticleGoogle Scholar

Copyright

© Li 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.