Skip to main content

A Framework for Adaptive Scalable Video Coding Using Wyner-Ziv Techniques

Abstract

This paper proposes a practical video coding framework based on distributed source coding principles, with the goal to achieve efficient and low-complexity scalable coding. Starting from a standard predictive coder as base layer (such as MPEG-4 baseline video coder in our implementation), the proposed Wyner-Ziv scalable (WZS) coder can achieve higher coding efficiency, by selectively exploiting the high quality reconstruction of the previous frame in the enhancement layer coding of the current frame. This creates a multi-layer Wyner-Ziv prediction "link," connecting the same bitplane level between successive frames, thus providing improved temporal prediction as compared to MPEG-4 FGS, while keeping complexity reasonable at the encoder. Since the temporal correlation varies in time and space, a block-based adaptive mode selection algorithm is designed for each bitplane, so that it is possible to switch between different coding modes. Experimental results show improvements in coding efficiency of 3–4.5 dB over MPEG-4 FGS for video sequences with high temporal correlation.

References

  1. 1.

    Rose K, Regunathan SL: Toward optimality in scalable predictive coding. IEEE Transactions on Image Processing 2001, 10(7):965–976. 10.1109/83.931091

    Article  Google Scholar 

  2. 2.

    Wu F, Li S, Zhang Y-Q: A framework for efficient progressive fine granularity scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology 2001, 11(3):332–344. 10.1109/76.911159

    Article  Google Scholar 

  3. 3.

    van der Schaar M, Radha H: Adaptive motion-compensation fine-granular-scalability (AMC-FGS) for wireless video. IEEE Transactions on Circuits and Systems for Video Technology 2002, 12(6):360–371. 10.1109/TCSVT.2002.800319

    Article  Google Scholar 

  4. 4.

    Huang H-C, Wang C-N, Chiang T: A robust fine granularity scalability using trellis-based predictive leak. IEEE Transactions on Circuits and Systems for Video Technology 2002, 12(6):372–385. 10.1109/TCSVT.2002.800314

    Article  Google Scholar 

  5. 5.

    Puri R, Ramchandran K: PRISM: a new robust video coding architecture based on distributed compression principles. Proceedings of 40th Annual Allerton Conference on Communication, Control, and Computing, October 2002, Allerton, Ill, USA

    Google Scholar 

  6. 6.

    Puri R, Ramchandran K: PRISM: a video coding architecture based on distributed compression principles. In Tech. Rep. UCB/ERL M03/6. EECS Department, University of California, Berkeley, Calif, USA; March 2003.

    Google Scholar 

  7. 7.

    Aaron AM, Zhang R, Girod B: Wyner-Ziv coding of motion video. Proceedings of 36th Asilomar Conference on Signals, Systems and Computers (ACSSC '02), November 2002, Pacific Grove, Calif, USA 1: 240–244.

    Google Scholar 

  8. 8.

    Girod B, Aaron AM, Rane S, Rebollo-Monedero D: Distributed video coding. Proceedings of the IEEE 2005, 93(1):71–83. Special issue on advances in video coding and delivery

    Article  Google Scholar 

  9. 9.

    Sehgal A, Jagmohan A, Ahuja N: A state-free causal video encoding paradigm. Proceedings of IEEE International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 1: 605–608.

    Google Scholar 

  10. 10.

    Sehgal A, Jagmohan A, Ahuja N: Wyner-Ziv coding of video: an error-resilient compression framework. IEEE Transactions on Multimedia 2004, 6(2):249–258. 10.1109/TMM.2003.822995

    Article  Google Scholar 

  11. 11.

    Wyner A, Ziv J: The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory 1976, 22(1):1–10. 10.1109/TIT.1976.1055508

    MathSciNet  Article  Google Scholar 

  12. 12.

    Steinberg Y, Merhav N: On successive refinement for the Wyner-Ziv problem. IEEE Transactions on Information Theory 2004, 50(8):1636–1654. 10.1109/TIT.2004.831781

    MathSciNet  Article  Google Scholar 

  13. 13.

    Xu Q, Xiong Z: Layered Wyner-Ziv video coding. Visual Communications and Image Processing (VCIP '04), January 2004, San Jose, Calif, USA, Proceedings of SPIE 5308: 83–91.

    Google Scholar 

  14. 14.

    Sehgal A, Jagmohan A, Ahuja N: Scalable video coding using Wyner-Ziv codes. Proceedings of Picture Coding Symposium (PCS '04), December 2004, San Francisco, Calif, USA

    Google Scholar 

  15. 15.

    Tagliasacchi M, Majumdar A, Ramchandran K: A distributed-source-coding based robust spatio-temporal scalable video codec. Proceedings of Picture Coding Symposium (PCS '04), December 2004, San Francisco, Calif, USA

    Google Scholar 

  16. 16.

    Wang H, Ortega A: Scalable predictive coding by nested quantization with layered side information. Proceedings of IEEE International Conference on Image Processing (ICIP '04), October 2004, Singapore 3: 1755–1758.

    Google Scholar 

  17. 17.

    Wang H, Cheung N-M, Ortega A: WZS: Wyner-Ziv scalable predictive video coding. Proceedings of Picture Coding Symposium (PCS '04), December 2004, San Francisco, Calif, USA

    Google Scholar 

  18. 18.

    Equitz WHR, Cover TM: Successive refinement of information. IEEE Transactions on Information Theory 1991, 37(2):269–275. 10.1109/18.75242

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liveris AD, Xiong Z, Georghiades CN: Compression of binary sources with side information at the decoder using LDPC codes. IEEE Communications Letters 2002, 6(10):440–442. 10.1109/LCOMM.2002.804244

    Article  Google Scholar 

  20. 20.

    MacKay DJC, Neal RM: Near Shannon limit performance of low density parity check codes. Electronics Letters 1996, 32(18):1645–1646. reprinted with printing errors corrected in vol. 33, no. 6, pp. 457–458, 1997 10.1049/el:19961141

    Article  Google Scholar 

  21. 21.

    Neal RM: Software for Low Density Parity Check (LDPC) codes. https://doi.org/www.cs.toronto.edu/~radford/ldpc.software.html

  22. 22.

    Zamir R, Shamai S, Erez U: Nested linear/lattice codes for structured multiterminal binning. IEEE Transactions on Information Theory 2002, 48(6):1250–1276. 10.1109/TIT.2002.1003821

    MathSciNet  Article  Google Scholar 

  23. 23.

    Cheong H-Y, Tourapis AM, Topiwala P: Fast motion estimation within the JVT codec. In Tech. Rep. JVT-E023. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 5th Meeting, Geneva, Switzerland; October 2002. https://doi.org/ftp3.itu.ch/av-arch/jvt-site/2002_10_Geneva/JVT-E023.doc

    Google Scholar 

  24. 24.

    He Y, Wu F, Li S, Zhong Y, Yang S: H.26L-based fine granularity scalable video coding. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '02), May 2002, Phoenix-Scottsdale, Ariz, USA 4: 548–551.

    Google Scholar 

  25. 25.

    Ha J, Kim J, McLaughlin SW: Rate-compatible puncturing of low-density parity-check codes. IEEE Transactions on Information Theory 2004, 50(11):2824–2836. 10.1109/TIT.2004.836667

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huisheng Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Cheung, N. & Ortega, A. A Framework for Adaptive Scalable Video Coding Using Wyner-Ziv Techniques. EURASIP J. Adv. Signal Process. 2006, 060971 (2006). https://doi.org/10.1155/ASP/2006/60971

Download citation

Keywords

  • Temporal Correlation
  • Video Code
  • Scalable Video Code
  • Adaptive Mode
  • Enhancement Layer