Skip to main content

Estimation and Direct Equalization of Doubly Selective Channels

Abstract

We propose channel estimation and direct equalization techniques for transmission over doubly selective channels. The doubly selective channel is approximated using the basis expansion model (BEM). Linear and decision feedback equalizers implemented by time-varying finite impulse response (FIR) filters may then be used to equalize the doubly selective channel, where the time-varying FIR filters are designed according to the BEM. In this sense, the equalizer BEM coefficients are obtained either based on channel estimation or directly. The proposed channel estimation and direct equalization techniques range from pilot-symbol-assisted-modulation- (PSAM-) based techniques to blind and semiblind techniques. In PSAM techniques, pilot symbols are utilized to estimate the channel or directly obtain the equalizer coefficients. The training overhead can be completely eliminated by using blind techniques or reduced by combining training-based techniques with blind techniques resulting in semiblind techniques. Numerical results are conducted to verify the different proposed channel estimation and direct equalization techniques.

References

  1. 1.

    Barhumi I, Leus G, Moonen M: Time-varying FIR equalization for doubly selective channels. IEEE Transactions on Wireless Communications 2005, 4(1):202–214.

    Article  Google Scholar 

  2. 2.

    Barhumi I, Leus G, Moonen M: Time-varying FIR decision feedback equalization of doubly-selective channels. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '03), December 2003, San Francisco, Calif, USA 4: 2263–2268.

    Article  Google Scholar 

  3. 3.

    Leus G, Barhumi I, Moonen M: Low-complexity serial equalization of doubly selective channels. Proceedings of 6th Baiona Workshop on Signal Processing in Communications, September 2003, Baiona, Spain 69–74.

    Google Scholar 

  4. 4.

    Barhumi I, Leus G, Moonen M: Per-tone equalization for OFDM over doubly-selective channels. Proceedings of the IEEE International Conference on Communications, June 2004, Paris, France 5: 2642–2647.

    MATH  Google Scholar 

  5. 5.

    Thomas T, Vook F: Multi-user frequency-domain channel identification, interference suppression, and equalization for time-varying broadband wireless communications. Proceedings of the 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM '00), March 2000, Cambridge, Mass, USA 444–448.

    Google Scholar 

  6. 6.

    Ma X, Giannakis GB, Ohno S: Optimal training for block transmissions over doubly selective wireless fading channels. IEEE Transactions on Signal Processing 2003, 51(5):1351–1366. 10.1109/TSP.2003.810304

    MathSciNet  Article  Google Scholar 

  7. 7.

    Xu G, Liu H, Tong L, Kailath T: Least-squares approach to blind channel identification. IEEE Transactions on Signal Processing 1995, 43(12):2982–2993. 10.1109/78.476442

    Article  Google Scholar 

  8. 8.

    Gesbert D, Duhamel P, Mayrargue S: On-line blind multichannel equalization based on mutually referenced filters. IEEE Transactions on Signal Processing 1997, 45(9):2307–2317. 10.1109/78.622953

    Article  Google Scholar 

  9. 9.

    Giannakis GB, Tepedelenlioǧlu C: Direct blind equalizers of multiple FIR channels: a deterministic approach. IEEE Transactions on Signal Processing 1999, 47(1):62–74. 10.1109/78.738240

    Article  Google Scholar 

  10. 10.

    Moulines E, Duhamel P, Cardoso J-f, Mayrargue S: Subspace methods for the blind identification of multichannel FIR filters. IEEE Transactions on Signal Processing 1995, 43(2):516–525. 10.1109/78.348133

    Article  Google Scholar 

  11. 11.

    Abed-Meraim K, Loubaton P, Moulines E: A subspace algorithm for certain blind identification problems. IEEE Transactions on Information Theory 1997, 43(2):499–511. 10.1109/18.556108

    Article  Google Scholar 

  12. 12.

    Abed-Meraim K, Qiu W, Hua Y: Blind system identification. Proceedings of the IEEE 1997, 85(8):1310–1322. 10.1109/5.622507

    Article  Google Scholar 

  13. 13.

    Wang X, Poor HV: Blind multiuser detection: a subspace approach. IEEE Transactions on Information Theory 1998, 44(2):677–690. 10.1109/18.661512

    MathSciNet  Article  Google Scholar 

  14. 14.

    Tong L, Perreau S: Multichannel blind identification: from subspace to maximum likelihood methods. Proceedings of the IEEE 1998, 86(10):1951–1968. 10.1109/5.720247

    Article  Google Scholar 

  15. 15.

    Giannakis GB, Hua Y, Stoica P, Tong L (Eds): Signal Processing Advances in Wireless & Mobile Communications: Trends in Single and Multi-User Systems. Prentice-Hall, New York, NY, USA; 2001.

    Google Scholar 

  16. 16.

    Giannakis GB, Tepedelenlioǧlu C: Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proceedings of the IEEE 1998, 86(10):1969–1986. 10.1109/5.720248

    Article  Google Scholar 

  17. 17.

    Liu H, Giannakis GB: Deterministic approaches for blind equalization of time-varying channels with antenna arrays. IEEE Transactions on Signal Processing 1998, 46(11):3003–3013. 10.1109/78.726813

    Article  Google Scholar 

  18. 18.

    Tugnait JK: Linear prediction error method for blind identification of time-varying channels: theoretical results. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '01), May 2001, Salt Lake City, Utah, USA 4: 2125–2128.

    Google Scholar 

  19. 19.

    Tugnait JK, Luo W: Blind identification of time-varying channels using multistep linear predictors. IEEE Transactions on Signal Processing 2004, 52(6):1739–1749. 10.1109/TSP.2004.827174

    Article  Google Scholar 

  20. 20.

    Jakes WC (Ed): Microwave Mobile Communications. John Wiley & Sons, New York, NY, USA; 1974.

    Google Scholar 

  21. 21.

    Sayeed AM, Aazhang B: Joint multipath-doppler diversity in mobile wireless communications. IEEE Transactions on Communications 1999, 47(1):123–132. 10.1109/26.747819

    Article  Google Scholar 

  22. 22.

    Ma X, Giannakis GB: Maximum-diversity transmissions over doubly selective wireless channels. IEEE Transactions on Information Theory 2003, 49(7):1832–1840. 10.1109/TIT.2003.813485

    MathSciNet  Article  Google Scholar 

  23. 23.

    Leus G, Zhou S, Giannakis GB: Orthogonal multiple access over time- and frequency-selective channels. IEEE Transactions on Information Theory 2003, 49(8):1942–1950. 10.1109/TIT.2003.814477

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kannu AP, Schniter P: Capacity analysis of MMSE pilot-aided transmission for doubly selective channels. Proceedings of the IEEE 6th Workshop on Signal Processing Advances in Wireless Communications (SPAWC '05), June 2005, New York, NY, USA 2005: 801–805.

    Article  Google Scholar 

  25. 25.

    Cavers JK: An analysis of pilot symbol assisted modulation for Rayleigh fading channels [mobile radio]. IEEE Transactions on Vehicular Technology 1991, 40(4):686–693. 10.1109/25.108378

    Article  Google Scholar 

  26. 26.

    Barhumi I, Leus G, Moonen M: Frequency-domain equalization for OFDM over doubly selective channels. Proceedings of 6th Baiona Workshop on Signal Processing in Communications, September 2003, Baiona, Spain 103–107.

    Google Scholar 

  27. 27.

    Leus G: On the estimation of rapidly time-varying channels. Proceedings of the European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 2227–2230.

    Google Scholar 

  28. 28.

    Clarke DW: Generalized-least-squares estimation of the parameters of a dynamic model. Proceedings of 1st IFAC Symposium on Identification and System Parameter Estimation, 1967, Prague, Czechoslovakia

    Google Scholar 

  29. 29.

    Leus G, Moonen M: Deterministic subspace based blind channel estimation for doubly selective channels. Proceedings of the 4th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC '03), June 2003, Rome, Italy 210–214.

    Google Scholar 

  30. 30.

    Ratnavel S, Paulraj A, Constantinides AG: MMSE space-time equalization for GSM cellular systems. Proceedings of IEEE 46th Vehicular Technology Conference (VTC '96), April–May 1996, Atlanta, Ga, USA 1: 331–335.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Imad Barhumi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barhumi, I., Leus, G. & Moonen, M. Estimation and Direct Equalization of Doubly Selective Channels. EURASIP J. Adv. Signal Process. 2006, 062831 (2006). https://doi.org/10.1155/ASP/2006/62831

Download citation

Keywords

  • Information Technology
  • Impulse Response
  • Quantum Information
  • Channel Estimation
  • Finite Impulse Response