Open Access

Dual-Channel Speech Enhancement by Superdirective Beamforming

EURASIP Journal on Advances in Signal Processing20062006:063297

https://doi.org/10.1155/ASP/2006/63297

Received: 31 January 2005

Accepted: 22 August 2005

Published: 21 March 2006

Abstract

In this contribution, a dual-channel input-output speech enhancement system is introduced. The proposed algorithm is an adaptation of the well-known superdirective beamformer including postfiltering to the binaural application. In contrast to conventional beamformer processing, the proposed system outputs enhanced stereo signals while preserving the important interaural amplitude and phase differences of the original signal. Instrumental performance evaluations in a real environment with multiple speech sources indicate that the proposed computational efficient spectral weighting system can achieve significant attenuation of speech interferers while maintaining a high speech quality of the target signal.

[123456789101112131415161718192021222324]

Authors’ Affiliations

(1)
Institute of Communication Systems and Data Processing, RWTH Aachen University

References

  1. Bitzer J, Simmer KU: Superdirective microphone arrays. In Microphone Arrays: Signal Processing Techniques and Applications. Edited by: Brandstein MS, Ward DB. Springer, Berlin, Germany; 2001:19-38. chapter 2View ArticleGoogle Scholar
  2. Gilbert EN, Morgan SP: Optimum design of directive antenna arrays subject to random variations. Bell System Technical Journal 1955, 34: 637-663.View ArticleGoogle Scholar
  3. Dörbecker M: Mehrkanalige Signalverarbeitung zur Verbesserung akustisch gestörter Sprachsignale am Beispiel elektronischer Hörhilfen, M.S. thesis. Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; 1998.Google Scholar
  4. Doclo S, Moonen M: Design of broadband beamformers robust against gain and phase errors in the microphone array characteristics. IEEE Transactions on Signal Processing 2003, 51(10):2511-2526. 10.1109/TSP.2003.816885View ArticleGoogle Scholar
  5. Tager W: Near field superdirectivity (NFSD). Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 4: 2045-2048.Google Scholar
  6. Griffiths LJ, Jim CW: An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation 1982, 30(1):27-34. 10.1109/TAP.1982.1142739View ArticleGoogle Scholar
  7. Hoshuyama O, Sugiyama A: Robust adaptive beamforming. In Microphone Arrays. Edited by: Brandstein MS, Ward DB. Springer, Berlin, Germany; 2001:87-110.View ArticleGoogle Scholar
  8. Herbordt W, Kellermann W: Adaptive beamforming for audio signal acquisition. In Adaptive Signal Processing—Applications to Real-World Problems. Edited by: Benesty J, Huang Y. Springer, Berlin, Germany; 2003:155-194.View ArticleGoogle Scholar
  9. Desloge JG, Rabinowitz WM, Zurek PM: Microphone-array hearing aids with binaural output. I. Fixed-processing systems. IEEE Transactions on Speech and Audio Processing 1997, 5(6):529-542. 10.1109/89.641298View ArticleGoogle Scholar
  10. Elko GW: Spatial coherence functions for differential microphones in isotropic noise fields. In Microphone Arrays: Signal Processing Techniques and Applications. Edited by: Brandstein MS, Ward DB. Springer, Berlin, Germany; 2001:61-86. chapter 4View ArticleGoogle Scholar
  11. Hamacher V: Comparison of advanced monaural and binaural noise reduction algorithms for hearing aids. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 4: 4008-4011.Google Scholar
  12. Hohmann V, Nix J, Grimm G, Wittkop T: Binaural noise reduction for hearing aids. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 4: 4000-4003.Google Scholar
  13. Wittkop T, Albani S, Hohmann V, Peissig J, Woods WS, Kollmeier B: Speech processing for hearing aids: noise reduction motivated by models of binaural interaction. Acustica United with Acta Acustica 1997, 83(4):684-699.Google Scholar
  14. Campbell DR, Shields PW: Speech enhancement using sub-band adaptive Griffiths–Jim signal processing. Speech Communication 2003, 39(1-2):97-110. Special issue on speech processing for hearing aids 10.1016/S0167-6393(02)00061-4View ArticleMATHGoogle Scholar
  15. Welker DP, Greenberg JE, Desloge JG, Zurek PM: Microphone-array hearing aids with binaural output. II. A two-microphone adaptive system. IEEE Transactions on Speech and Audio Processing 1997, 5(6):543-551. 10.1109/89.641299View ArticleGoogle Scholar
  16. Lotter T: Single and multimicrophone speech enhancement for hearing aids, M.S. thesis. Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; 2004.Google Scholar
  17. Blauert J: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge, Mass, USA; 1983.Google Scholar
  18. Gardner B, Martin K: HRTF measurement of a KEMAR dummy-head microphone. In Tech. Rep. 280. MIT Media Laboratory Perceptual Computing, Davos, Switzerland; May 1994. http://sound.media.mit.edu/KEMAR.htmlGoogle Scholar
  19. Brown CP, Duda RO: A structural model for binaural sound synthesis. IEEE Transactions on Speech and Audio Processing 1998, 6(5):476-488. 10.1109/89.709673View ArticleGoogle Scholar
  20. Monzingo RA, Miller TW: Introduction to Adaptive Arrays. John Wiley & Sons, New York, NY, USA; 1980.Google Scholar
  21. Simmer KU, Bitzer J, Marro C: Post-filtering techniques. In Microphone Arrays: Signal Processing Techniques and Applications. Edited by: Brandstein MS, Ward DB. Springer, Berlin, Germany; 2001:39-60. chapter 3View ArticleGoogle Scholar
  22. Zelinski R: A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '88), April 1988, New York, NY, USA 5: 2578-2581.Google Scholar
  23. Marro C, Mahieux Y, Simmer KU: Analysis of noise reduction and dereverberation techniques based on microphone arrays with postfiltering. IEEE Transactions on Speech and Audio Processing 1998, 6(3):240-259. 10.1109/89.668818View ArticleGoogle Scholar
  24. ANSI S3.5-1997 American National Standards Institute : Methods for Calculation of the Speech Intelligibility Index. ANSI S3.5-1997, 1997.Google Scholar

Copyright

© Lotter and Vary 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.