Skip to content


  • Research Article
  • Open Access

Low-Complexity Banded Equalizers for OFDM Systems in Doppler Spread Channels

EURASIP Journal on Advances in Signal Processing20062006:067404

  • Received: 23 June 2005
  • Accepted: 30 April 2006
  • Published:


Recently, several approaches have been proposed for the equalization of orthogonal frequency-division multiplexing (OFDM) signals in challenging high-mobility scenarios. Among them, a minimum mean-squared error (MMSE) block linear equalizer (BLE), based on a band LDL factorization, is particularly attractive for its good tradeoff between performance and complexity. This paper extends this approach towards two directions. First, we boost the BER performance of the BLE by designing a receiver window specially tailored to the band LDL factorization. Second, we design an MMSE block decision-feedback equalizer (BDFE) that can be modified to support receiver windowing. All the proposed banded equalizers share a similar computational complexity, which is linear in the number of subcarriers. Simulation results show that the proposed receiver architectures are effective in reducing the BER performance degradation caused by the intercarrier interference (ICI) generated by time-varying channels. We also consider a basis expansion model (BEM) channel estimation approach, to establish its impact on the BER performance of the proposed banded equalizers.


  • Channel Estimation
  • OFDM System
  • Doppler Spread
  • Receiver Architecture
  • Basis Expansion Model


Authors’ Affiliations

Department of Electronic and Information Engineering, University of Perugia, Via G. Duranti, Perugia, 93-06125, Italy
Department of Electrical Engineering, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, CD, 2628, The Netherlands


  1. Wang Z, Giannakis GB: Wireless multicarrier communications: where Fourier meets Shannon. IEEE Signal Processing Magazine 2000, 17(3):29-48. 10.1109/79.841722View ArticleGoogle Scholar
  2. Robertson P, Kaiser S: The effects of Doppler spreads on OFDM(A) mobile radio systems. Proceedings of the 49th IEEE Vehicular Technology Conference (VTC '99), September 1999, Amsterdam, The Netherlands 329-333.Google Scholar
  3. Russell M, Stüber GL: Interchannel interference analysis of OFDM in a mobile environment. Proceedings of the 45th IEEE Vehicular Technology Conference (VTC '95), July 1995, Chicago, Ill, USA 820-824.Google Scholar
  4. Barhumi I, Leus G, Moonen M: Time-domain and frequency-domain per-tone equalization for OFDM over doubly selective channels. Signal Processing 2004, 84(11):2055-2066. 10.1016/j.sigpro.2004.07.016View ArticleMATHGoogle Scholar
  5. Cai X, Giannakis GB: Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. IEEE Transactions on Communications 2003, 51(12):2047-2056. 10.1109/TCOMM.2003.820752View ArticleGoogle Scholar
  6. Choi Y-S, Voltz PJ, Cassara FA: On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications 2001, 49(8):1375-1387. 10.1109/26.939860View ArticleMATHGoogle Scholar
  7. Gorokhov A, Linnartz J-P: Robust OFDM receivers for dispersive time-varying channels: equalization and channel acquisition. IEEE Transactions on Communications 2004, 52(4):572-583. 10.1109/TCOMM.2004.826354View ArticleGoogle Scholar
  8. Jeon WG, Chang KH, Cho YS: An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Transactions on Communications 1999, 47: 27-32. 10.1109/26.747810View ArticleGoogle Scholar
  9. Rugini L, Banelli P, Leus G: Simple equalization of time-varying channels for OFDM. IEEE Communications Letters 2005, 9(7):619-621. 10.1109/LCOMM.2005.1461683View ArticleGoogle Scholar
  10. Schniter P: Low-complexity equalization of OFDM in doubly selective channels. IEEE Transactions on Signal Processing 2004, 52: 1002-1011. 10.1109/TSP.2004.823503MathSciNetView ArticleGoogle Scholar
  11. Harris FJ: On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE 1978, 66(1):51-83.View ArticleGoogle Scholar
  12. Al-Dhahir N, Sayed AH: The finite-length multi-input multi-output MMSE-DFE. IEEE Transactions on Signal Processing 2000, 48(10):2921-2936. 10.1109/78.869048View ArticleGoogle Scholar
  13. Stamoulis A, Giannakis GB, Scaglione A: Block FIR decision-feedback equalizers for filterbank precoded transmissions with blind channel estimation capabilities. IEEE Transactions on Communications 2001, 49(1):69-83. 10.1109/26.898252View ArticleMATHGoogle Scholar
  14. Kannu AP, Schniter P: MSE-optimal training for linear time-varying channels. Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3(1):789-792.Google Scholar
  15. Ma X, Giannakis GB, Ohno S: Optimal training for block transmissions over doubly-selective wireless fading channels. IEEE Transactions on Signal Processing 2003, 51(5):1351-1366. 10.1109/TSP.2003.810304MathSciNetView ArticleGoogle Scholar
  16. Stamoulis A, Diggavi SN, Al-Dhahir N: Intercarrier interference in MIMO OFDM. IEEE Transactions on Signal Processing 2002, 50(10):2451-2464. 10.1109/TSP.2002.803347View ArticleGoogle Scholar
  17. Golub GH, Van Loan CF: Matrix Computations. 3rd edition. Johns Hopkins University Press, Baltimore, Md, USA; 1996.MATHGoogle Scholar
  18. Tong L, Sadler BM, Dong M: Pilot-assisted wireless transmissions. IEEE Signal Processing Magazine 2004, 21(6):12-25. 10.1109/MSP.2004.1359139View ArticleGoogle Scholar
  19. Negi R, Cioffi J: Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Transactions on Consumer Electronics 1998, 44(3):1122-1128. 10.1109/30.713244View ArticleGoogle Scholar
  20. Giannakis GB, Tepedelenlioglu C: Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proceedings of the IEEE 1998, 86(10):1969-1986. 10.1109/5.720248View ArticleGoogle Scholar
  21. Leus G, Moonen M: Equalization techniques for fading channels. In Handbook on Signal Processing for Communications. Edited by: Ibnkahla M. CRC Press, Boca Raton, Fla, USA; 2004. chapter 16Google Scholar
  22. Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Volume 1. Prentice Hall, Englewood Cliffs, NJ, USA; 1993.MATHGoogle Scholar
  23. Zemen T, Mecklenbraäuker CF: Time-variant channel equalization via discrete prolate spheroidal sequences. Proceedings of the IEEE Asilomar Conference on Signals, Systems and Computers, November 2003, Pacific Grove, Calif, USA 2: 1288-1292.Google Scholar
  24. Borah DK, Hart BD: Frequency-selective fading channel estimation with a polynomial time-varying channel model. IEEE Transactions on Communications 1999, 47(6):862-873. 10.1109/26.771343View ArticleGoogle Scholar
  25. Leus G: On the estimation of rapidly time-varying channels. Proceedings of European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 2227-2230.Google Scholar
  26. Kannu AP, Schniter P: Capacity analysis of MMSE pilot patterns for doubly-selective channels. Proceedings of 6th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC '05), June 2005, New York, NY, USAGoogle Scholar