Skip to main content

Facial Image Compression Based on Structured Codebooks in Overcomplete Domain

Abstract

We advocate facial image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: image compression is considered from the position of source coding with side information and, contrarily to the existing scenarios where the side information is given explicitly; the side information is created based on a deterministic approximation of the local image features. We consider an image in the overcomplete transform domain as a realization of a random source with a structured codebook of symbols where each symbol represents a particular edge shape. Due to the partial availability of the side information at both encoder and decoder, we treat our problem as a modification of the Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available at the decoder. Finally, the paper presents a practical image compression algorithm for facial images based on our concept that demonstrates the superior performance in the very-low-bit-rate regime.

References

  1. 1.

    Daubechies I: Ten Lectures on Wavelets. SIAM, Philadelphia, Pa, USA; 1992.

    Google Scholar 

  2. 2.

    Mallat SG: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, 11(7):674–693. 10.1109/34.192463

    Article  Google Scholar 

  3. 3.

    Chrysafis C, Ortega A: Efficient context-based entropy coding lossy wavelet image compression. Proceedings of Data Compression Conference (DCC '97), March 1997, Snowbird, Utah, USA 241–250.

    Google Scholar 

  4. 4.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996, 6(3):243–250. 10.1109/76.499834

    Article  Google Scholar 

  5. 5.

    Shapiro JM: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 1993, 41(12):3445–3462. 10.1109/78.258085

    Article  Google Scholar 

  6. 6.

    Xiong Z, Ramchandran K, Orchard MT: Space-frequency quantization for wavelet image coding. IEEE Transactions on Image Processing 1997, 6(5):677–693. 10.1109/83.568925

    Article  Google Scholar 

  7. 7.

    LoPresto SM, Ramchandran K, Orchard MT: Wavelet image coding via rate-distortion optimized adaptive classification. Proceedings of NJIT Symposium on Wavelet, Subband and Block Transforms in Communications, 1997, Newark, NJ, USA

    Google Scholar 

  8. 8.

    LoPresto SM, Ramchandran K, Orchard MT: Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework. Proceedings of Data Compression Conference (DCC '97), March 1997, Snowbird, Utah, USA 221–230.

    Google Scholar 

  9. 9.

    Deever A, Hemami SS: What's your sign? efficient sign coding for embedded wavelet image coding. Proceedings of Data Compression Conference (DCC '00), March 2000, Snowbird, Utah, USA 273–282.

    Google Scholar 

  10. 10.

    Wu X: Compression of wavelet transform coefficients. In The Transform and Data Compression Handbook. Edited by: Rao KR, Yip PC. CRC Press LLC, Boca Raton, Fla, USA; 2001:347–378. chapter 8

    Google Scholar 

  11. 11.

    Pradhan SS, Ramchandran K: Enhancing analog image transmission systems using digital side information: a new wavelet-based image coding paradigm. Proceedings of Data Compression Conference (DCC '01), March 2001, Snowbird, Utah, USA 63–72.

    Google Scholar 

  12. 12.

    Cover TM, Thomas J: Elements of Information Theory. John Wiley and Sons, New York, NY, USA; 1991.

    Google Scholar 

  13. 13.

    Slepian D, Wolf JK: Noiseless encoding of correlated information sourcea. IEEE Transactions on Information Theory 1973, 19(4):471–480. 10.1109/TIT.1973.1055037

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cover TM, Chiang M: Duality between channel capacity and rate distortion with two sided state information. IEEE Transactions on Information Theory 2002, 48(6):1629–1638. 10.1109/TIT.2002.1003843

    MathSciNet  Article  Google Scholar 

  15. 15.

    Shannon CE: Coding theorems for a discrete source with a fidelity criterion. Institute of Radio Engineers, International Convention Record 1959, 7 (Part 4): 142–163.

    Google Scholar 

  16. 16.

    Berger T: Rate-Distortion Theory: A Mathematical Basis for Data Compression. Prentice-Hall, Englewood Cliffs, NJ, USA; 1971.

    Google Scholar 

  17. 17.

    Wyner A, Ziv J: The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory 1976, 22(1):1–10. 10.1109/TIT.1976.1055508

    MathSciNet  Article  Google Scholar 

  18. 18.

    Berger T: Multiterminal source coding. In The Information Theory Approach to Communications. Edited by: Longo G. Springer, New York, NY, USA; 1977.

    Google Scholar 

  19. 19.

    Flynn TJ, Gray RM: Encoding of correlated observations. IEEE Transactions on Information Theory 1987, 33(6):773–787. 10.1109/TIT.1987.1057384

    MathSciNet  Article  Google Scholar 

  20. 20.

    Zamir R: The rate loss in the Wyner-Ziv problem. IEEE Transactions on Information Theory 1996, 42(6, Part 2):2073–2084. 10.1109/18.556597

    Article  Google Scholar 

  21. 21.

    Mihcak MK, Kozintsev I, Ramchandran K, Moulin P: Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters 1999, 6(12):300–303. 10.1109/97.803428

    Article  Google Scholar 

  22. 22.

    Yoo Y, Ortega A, Yu B: Image subband coding using context based classification and adaptive quantization. IEEE Transactions on Image Processing 1999, 8(12):1702–1715. 10.1109/83.806617

    Article  Google Scholar 

  23. 23.

    Mallat SG: A Wavelet Tour of Signal Processing. Academic Press, New York, NY, USA; 1997.

    Google Scholar 

  24. 24.

    Voloshynovskiy S, Koval O, Pun T: Wavelet-based image denoising using non-stationary stochastic geometrical image priors. Proceedings of IS&T/SPIE's 15th Annual Symposium, Electronic Imaging: Image and Video Communications and Processing 2003, January 2003, Santa Clara, Calif, USA, Proceedings of SPIE 5022: 675–687.

    Google Scholar 

  25. 25.

    Kozintsev I, Ramchandran K: Multiresolution joint source-channel coding using embedded constellations for power-constrained time-varying channels. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 4: 2343–2346.

    Google Scholar 

  26. 26.

    Canny J: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986, 8(6):679–698.

    Article  Google Scholar 

  27. 27.

    Proakis JG: Digital Communications. 3rd edition. McGraw-Hill, New York, NY, USA; 1995.

    Google Scholar 

  28. 28.

    Hjorungnes A, Lervik JM, Ramstad TA: Entropy coding of composite sources modeled by infinite Gaussian mixture distributions. Proceedings of IEEE Digital Signal Processing Workshop, September 1996, Loen, Norway 235–238.

    Google Scholar 

  29. 29.

    Rao KR, Yip PC (Eds): The Transform and Data Compression Handbook. CRC Press, Boca Raton, Fla, USA ; 2000.

    Google Scholar 

  30. 30.

    Christopoulos C, Askelof J, Larsson M: Efficient methods for encoding regions of interest in the upcoming JPEG 2000 still image coding standard. IEEE Signal Processing Letters 2000, 7(9):247–249. 10.1109/97.863146

    Article  Google Scholar 

  31. 31.

    Atsumi E, Farvardin N: Lossy/lossless region-of-interest image coding based on set partitioning in hierarchical trees. Proceedings of IEEE International Conference on Image Processing. (ICIP '98), October 1998, Chicago, Ill, USA 1: 87–91.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. E. Vila-Forcén.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vila-Forcén, J.E., Voloshynovskiy, S., Koval, O. et al. Facial Image Compression Based on Structured Codebooks in Overcomplete Domain. EURASIP J. Adv. Signal Process. 2006, 069042 (2006). https://doi.org/10.1155/ASP/2006/69042

Download citation

Keywords

  • Source Code
  • Quantum Information
  • Facial Image
  • Image Compression
  • Local Image