- Research Article
- Open Access
- Published:
An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches
EURASIP Journal on Advances in Signal Processing volume 2006, Article number: 080163 (2006)
Abstract
This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.
References
Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science 1995, 270: 467–470. 10.1126/science.270.5235.467
Fenstemacher D: Introduction to bioinformatics. Journal of the American Society for Information Science and Technology 2005, 65(5):440–446.
MacMullen WJ, Denn SO: Information problems in molecular biology and bioinformatics. Journal of the American Society for Information Science and Technology 2005, 65(5):447–456.
Quackenbush J: Computational analysis of microarray. Computational Analysis of Microarray 2001, 2(6):418–427.
Bajcsy P, Han J, Liu L, Young J: Survey of bioData analysis from data mining perspective. In Data Mining in Bioinformatics. Edited by: Wang JTL, Zaki MJ, Toivonen HTT, Shasha D. Springer, New York, NY, USA; 2004:9–39. chapter 2
Baldi P, Brunak S: Bioinformatics, The Machine Learning Approach. 2nd edition. The MIT Press, Cambridge, Mass, USA; 2001.
Golub TR, Slonim DK, Tamayo P, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531–537. 10.1126/science.286.5439.531
Moore SK: Understanding the human genome. IEEE Spectrum 2000, 37(11):33–42. 10.1109/6.880951
Goryachev AB, MacGregor PF, Edwards AM: Unfolding of microarray data. Journal of Computational Biology 2001, 8(4):443–461. 10.1089/106652701752236232
Bajcsy P: An overview of microarray image processing requirements. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), the Workshop on Computer Vision Methods for Bioinformatics (CVMB), June 2005, San Diego, Calif, USA
Brazma A, Hungamp P, Quackenbush J, et al.: Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. Nature Genetics 2001, 29(4):365–371. 10.1038/ng1201-365
Kamberova G, Shah S (Eds): DNA Array Image Analysis - Nuts and Bolts. Data Analysis Tools for DNA Microarrays. DNA Press LLC, Salem, Mass, USA; 2002.
Srinark T, Kambhamettu C: A microarray image analysis system based on multiple-snake. Journal of Biological Systems 2004., 12(4): Special issue
Yue H, Eastman PS, Wang BB, et al.: An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Research 2001, 29(8):e41–1.
Draghici S: Data Analysis Tools for DNA Microarrays, CRC Mathematical Biology and Medicine Series. Chapman & Hall, London, UK; 2003.
Han J, Kamber M: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, Calif, USA; 2001.
Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg Ã…, Peterson C: BioArray software environment: a platform for comprehensive management and analysis of microarray data. Genome Biology 2002., 3(8): software 0003.1-0003.6
Samartzidou H, Turner L, Houts T: Lucidea Microarray ScoreCard: An integrated tool for validation of microarray gene expression experiments," Innovation Forum, Microarrays. Life Science News 8, 2001 Amersham Pharmacia Biotech
Rocke D, Durbin B: A model for measurement error for gene expression arrays. Journal of Computational Biology 2001, 8(6):557–569. 10.1089/106652701753307485
Seo J, Shneiderman B: Interactively exploring hierarchical clustering results. IEEE Computer 2002, 35(7):80–86. 10.1109/MC.2002.1016905
Balagurunathan Y, Dougherty ER, Chen Y, Bittner ML, Trent JM: Simulation of cDNA microarrays via a parameterized random signal model. Journal of Biomedical Optics 2002., 7(3):
Brandle N, Bischof H, Lapp H: Robust DNA Microarray image analysis. Machine Vision and Applications 2003, 15(1):11–28. 10.1007/s00138-002-0114-x
Whitfield CW, Cziko AM, Robinson GE: Gene expression profiles in the brain predict behavior in individual honey bees. Science 2003, 302: 296–299. 10.1126/science.1086807
Bajcsy P: Gridline: automatic grid alignment in DNA microarray scans. IEEE Transactions on Image Processing 2004, 13(1):15–25. 10.1109/TIP.2003.819941
Jung H-Y, Cho H-G: An automatic block and spot indexing with k-nearest neighbors graph for microarray image analysis. Bioinformatics 2002, 18(2):S141–S151. 10.1093/bioinformatics/18.suppl_2.S141
Axon Instruments Inc : GenePix Pro, Product Description. https://doi.org/www.axon.com/GN_Genomics.html
Eisen M: ScanAlyze. Product Description at https://doi.org/rana.lbl.gov/EisenSoftware.htm
Scanalytics Inc : MicroArray Suite. Product Description at https://doi.org/www.scanalytics.com/product/hts/microarray.html
Buhler J, Ideker T, Haynor D: Dapple: improved techniques for finding spots on DNA microarrays. In Tech. Rep. UWTR 2000-08-05. UV CSE, Seattle, Wash, USA;
Biodiscovery Inc : ImaGene Product description. 2005.https://doi.org/www.biodiscovery.com/imagene.asp
Packard BioChip Technologies, LLC, "Quant Array Analysis Software," Product Description at https://doi.org/las.perkinelmer.com/Content/RelatedMaterials/ReflectionTechNote.pdf
Imaging Research Inc : Array Vision. Product Description at https://doi.org/www.imagingresearch.com/products/Genomics_Software.asp
Hartelius K, Cartstensen JM: Bayesian grid matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003, 25(2):162–173. 10.1109/TPAMI.2003.1177149
Bajcsy P: Image To Knowledge (I2K). Software Documentation at https://doi.org/isda.ncsa.uiuc.edu/i2kmanual/
CSIRO Mathematical and Informational Sciences : SpotImage Analysis Software. Product Documentation at https://doi.org/experimental.act.cmis.csiro.au/Spot/index.php
Jain AN, Tokuyasu TA, Snijders AM, Segraves R, Albertson DG, Pinkel D: Fully automated quantification of microarray image data. Genome Research 2002, 12(2):325–332. 10.1101/gr.210902
Steinfath M, Wruck W, Seidel H, Lehrach H, Radelof U, O'Brien J: Automated image analysis for array hybridization experiments. Bioinformatics 2001, 17(7):634–641. 10.1093/bioinformatics/17.7.634
Katzer M, Kummert F, Sagerer G: Robust automatic microarray image analysis. Proceedings of the International Conference on Bioinformatics: North-South Networking, 2002, Bangkok, Thailand
Katzer M, Kummert F, Sagerer G: Methods for automatic microarray image segmentation. IEEE Transactions on Nanobioscience 2003, 2(4):202–212. 10.1109/TNB.2003.817023
Liew AW-C, Yan H, Yang M: Robust adaptive spot segmentation of DNA microarray images. Pattern Recognition 2003, 36(5):1251–1254. 10.1016/S0031-3203(02)00170-X
Russ J: The Image Processing Handbook. 3rd edition. CRC Press LLC, Boca Raton, Fla, USA; 1999.
Angulo J, Serra J: Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics 2003, 19(5):553–562. 10.1093/bioinformatics/btg057
Hirata R, Barrera J, Hashimoto RF, Dantas DO: Microarray gridding by mathematical morphology. Proceedings of 14th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI '01), October 2001, Florianopolis, Brazil 112–119.
Antoniol G, Ceccarelli M: A markov random field approach to microarray image gridding. Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04) , August 2004, Cambridge, UK
Demirkaya O, Asyali MH, Shoukri MM: Segmentation of cDNA microarray spots using Markov random field modeling. Bioinformatics 2005, 21(13):2994–3000. 10.1093/bioinformatics/bti455
Jin H-J, Chun B-K, Cho HG: Extended epsilon regular sequence for automated analysis of microarray images. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), the Workshop on Computer Vision Methods for Bioinformatics (CVMB), June 2005, San Diego, Calif, USA
Bozinov D, Rahnenfuhrer J: Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering. Bioinformatics 2002, 18(5):747–756. 10.1093/bioinformatics/18.5.747
Tou JT, Gonzales RC: Pattern Recognition Principles. Addison-Wesley, Reading, Mass, USA; 1974.
Rahnenführer J, Bozinov D: Hybrid clustering for microarray image analysis combining intensity and shape features. BMC Bioinformatics 2004, 5(1):47. 10.1186/1471-2105-5-47
Chen Y, Dougherty ER, Bittner ML: Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal Of Biomedical Optics 1997, 2(4):364–374. 10.1117/12.281504
Sheskin DJ: Handbook of Parametric and Nonparametric Statistical Procedures. 2nd edition. Chapman & Hall CRC, London, UK; 2000.
Lukac R, Plataniotis KN, Smolka B, Venetsanopoulos AN: An automated multichannel procedure for cDNA microarray image processing. Lecture Notes in Computer Science 2004, 3212: 1–8. 10.1007/978-3-540-30126-4_1
Adams RM, Stancampiano B, McKenna M, Small D: Case study: a virtual environment for genomic data visualization. IEEE Transactions on Visualization 2002., 1: October 27–November 1, 2002, Boston, Mass, USA (published as CD)
Lawrence ND, Milo M, Niranjan M, Rashbass P, Soullier S: Reducing the variability in cDNA microarray image processing by Bayesian inference. Bioinformatics 2004, 20(4):518–526. 10.1093/bioinformatics/btg438
Foster I, Kesselman C: Computational grids. In The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufman, San Francisco, Calif, USA; 1999. chapter 2
Karo M, Dwan C, Freeman J, Weissman J, Livny M, Retzel E: Applying grid technologies to bioinformatics. Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing (HPDC '01), August 2001, San Francisco, Calif, USA 441–442.
Strom CM, Clark DD, Hantash FM, et al.: Direct visualization of cystic fibrosis transmembrane regulator mutations in the clinical laboratory setting. Clinical Chemistry 2004, 50(5):836–845. 10.1373/clinchem.2003.026088
Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure, https://doi.org/www.nsf.gov/od/oci/reports/toc.jsp
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Bajcsy, P. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches. EURASIP J. Adv. Signal Process. 2006, 080163 (2006). https://doi.org/10.1155/ASP/2006/80163
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/ASP/2006/80163
Keywords
- Information Technology
- Image Data
- Fundamental Principle
- Microarray Data
- Quantum Information