Skip to main content

Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

Abstract

This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

References

  1. 1.

    Qian S, Chen D: Joint Time-Frequency Analysis: Methods and Applications. Prentice-Hall, Upper Saddle River, NJ, USA; 1994.

    Google Scholar 

  2. 2.

    Boashash B (Ed): Time-Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier, Oxford, UK; 2003.

    Google Scholar 

  3. 3.

    Jacobson L, Wechsler H: The Wigner distribution as a tool for deriving an invariant representation of 2-D images. Proceedings of the International Conference on Pattern Recognition and Image Processing, June 1982, Las Vegas, Nev, USA 218–220.

    Google Scholar 

  4. 4.

    Reed TR, Wechsler H: Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990, 12(1):1–12. 10.1109/34.41379

    Article  Google Scholar 

  5. 5.

    Zhu YM, Goutte R, Amiel M: On the use of two-dimensional Wigner-Ville distribution for texture segmentation. Signal Processing 1993, 30(3):329–353. 10.1016/0165-1684(93)90016-4

    Article  Google Scholar 

  6. 6.

    Jacobson L, Wechsler H: Joint spatial/spatial-frequency representation. Signal Processing 1988, 14(1):37–68. 10.1016/0165-1684(88)90043-6

    Article  Google Scholar 

  7. 7.

    Cristóbal G, Hormigo J: Texture segmentation through eigen-analysis of the Pseudo-Wigner distribution. Pattern Recognition Letters 1999, 20(3):337–345. 10.1016/S0167-8655(99)00002-1

    Article  Google Scholar 

  8. 8.

    Stankovic S, Djurovic I, Pitas I: Watermarking in the space/spatial-frequency domain using two-dimensional Radon-Wigner distribution. IEEE Transactions on Image Processing 2001, 10(4):650–658. 10.1109/83.913599

    Article  Google Scholar 

  9. 9.

    Iordache R, Beghdadi A: A Wigner-Ville distribution-based image dissimilarity measure. Proceedings of the 6th International Symposium on Signal Processing and Its Applications (ISSPA '01), August 2001, Kuala Lumpur, Malaysia 2: 430–433.

    Google Scholar 

  10. 10.

    Gabarda S, Cristóbal G: On the use of a joint spatial-frequency representation for the fusion of multi-focus images. Pattern Recognition Letters 2005, 26(16):2572–2578. 10.1016/j.patrec.2005.06.003

    Article  Google Scholar 

  11. 11.

    Special issue on image quality assessment Signal Processing 1998., 70:

  12. 12.

    García-Pérez MA, Sierra-Vázquez V: Visual processing in the joint spatial/spatial-frequency domain. In Visual Models for Target Detection and Recognition. Edited by: Peli E. World Scientific, Hackensack, NJ, USA; 1995:16–62.

    Google Scholar 

  13. 13.

    Eskicioglu AM, Fisher PS: Image quality measures and their performance. IEEE Transactions on Communications 1995, 43(12):2959–2965. 10.1109/26.477498

    Article  Google Scholar 

  14. 14.

    ITU-R Recommendation BT.500-7 : Methodology for the Subjective Assessment of the Quality of Television Pictures. ITU, Geneva, Switzerland, 1995

  15. 15.

    Wang Z, Lu L, Bovik AC: Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication 2004, 19(2):121–132. special issue on "Objective video quality metrics" 10.1016/S0923-5965(03)00076-6

    Google Scholar 

  16. 16.

    Bülow T, Sommer G: A novel approach to the 2d analytic signal. Proceedings of the 8th International Conference on Computer Analysis of Images and Patterns (CAIP '99), September 1999, Ljubljana, Slovenia 25–32.

    Google Scholar 

  17. 17.

    Hahn SL: Multidimensional complex signals with single-orthant spectra. Proceedings of the IEEE 1992, 80: 1287–1300. 10.1109/5.158601

    Article  Google Scholar 

  18. 18.

    Boashash B, Black PJ: An efficient real-time implementation of the Wigner-Ville distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987, 35(11):1611–1618. 10.1109/TASSP.1987.1165070

    Article  Google Scholar 

  19. 19.

    Homigo J, Cristobal G: High resolution spectral analysis of images using the pseudo-Wigner distribution. IEEE Transactions on Signal Processing 1998, 46(6):1757–1763. 10.1109/78.678519

    Article  Google Scholar 

  20. 20.

    Iordache R, Beghdadi A: Single-quadrant analytic images for 2-D discrete Wigner distribution. Proceedings of the 8th International Workshop on Systems, Signals and Image Processing (IWSSIP '01), June 2001, Bucharest, Romania 163–166.

    Google Scholar 

  21. 21.

    Malik J, Perona P: Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America 1990, 7(5):923–932. 10.1364/JOSAA.7.000923

    Article  Google Scholar 

  22. 22.

    Watson AB, Solomon JA: Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A: Optics and Image Science, and Vision 1997, 14(9):2379–2391. 10.1364/JOSAA.14.002379

    Article  Google Scholar 

  23. 23.

    Teo PC, Heeger DJ: Perceptual image distortion. Proceedings of the 1st IEEE International Conference on Image Processing, November 1994, Austin, Tex, USA 2: 982–986.

    Article  Google Scholar 

  24. 24.

    Beghdadi A, Pesquet-Popescu B: A new image distortion measure based on wavelet decomposition. Proceedings of the 6th International Symposium on Signal Processing and Its Applications (ISSPA '03), July 2003, Paris, France 1: 485–488.

    Google Scholar 

  25. 25.

    Sundaram RS, Prabhu KMM: Numerically stable algorithm for computing Wigner-Ville distribution. IEE Proceedings - Vision, Image, and Signal Processing 1997, 144(1):46–48. 10.1049/ip-vis:19970817

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azeddine Beghdadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beghdadi, A., Iordache, R. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation. EURASIP J. Adv. Signal Process. 2006, 080537 (2006). https://doi.org/10.1155/ASP/2006/80537

Download citation

Keywords

  • Analytic Image
  • Information Technology
  • Image Quality
  • Quality Assessment
  • Quantum Information