Skip to main content
  • Research Article
  • Open access
  • Published:

Frequency and 2D Angle Estimation Based on a Sparse Uniform Array of Electromagnetic Vector Sensors

Abstract

We present an ESPRIT-based algorithm that yields extended-aperture two-dimensional (2D) arrival angle and carrier frequency estimates with a sparse uniform array of electromagnetic vector sensors. The ESPRIT-based frequency estimates are first achieved by using the temporal invariance structure out of the two time-delayed sets of data collected from vector sensor array. Each incident source's coarse direction of arrival (DOA) estimation is then obtained through the Poynting vector estimates (using a vector cross-product estimator). The frequency and coarse angle estimate results are used jointly to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector sensor spacing exceeds a half wavelength. Monte Carlo simulation results verified the effectiveness of the proposed method.

References

  1. Nehorai A, Paldi E: Vector sensor processing for electromagnetic source localization. Proceedings of the 25th Asilomar Conference on Signals, Systems and Computers, November 1991, Pacific Grove, Calif, USA 1: 566–572.

    Google Scholar 

  2. Nehorai A, Paldi E: Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing 1994, 42(2):376–398. 10.1109/78.275610

    Article  Google Scholar 

  3. Li J: Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Transactions on Antennas and Propagation 1993, 41(3):379–386. 10.1109/8.233120

    Article  Google Scholar 

  4. Hochwald B, Nehorai A: Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing 1996, 44(1):83–95. 10.1109/78.482014

    Article  Google Scholar 

  5. Ho K-C, Tan K-C, Ser W: Investigation on number of signals whose directions-of-arrival are uniquely determinable with an electromagnetic vector sensor. Signal Processing 1995, 47(1):41–54. 10.1016/0165-1684(95)00098-4

    Article  Google Scholar 

  6. Tan K-C, Ho K-C, Nehorai A: Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors. IEEE Transactions on Signal Processing 1996, 44(4):1036–1039. 10.1109/78.492566

    Article  Google Scholar 

  7. Hochwald B, Nehorai A: Polarimetric modeling and parameter estimation with applications to remote sensing. IEEE Transactions on Signal Processing 1995, 43(8):1923–1935. 10.1109/78.403351

    Article  Google Scholar 

  8. Ho K-C, Tan K-C, Tan BTG: Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing 1997, 45(10):2485–2498. 10.1109/78.640714

    Article  Google Scholar 

  9. Ho K-C, Tan K-C, Nehorai A: Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing 1999, 47(10):2845–2852. 10.1109/78.790664

    Article  Google Scholar 

  10. Wong KT: Direction finding/polarization estimation—dipole and/or loop triads. IEEE Transactions on Aerospace and Electronic Systems 2001, 37(2):679–684. 10.1109/7.937478

    Article  Google Scholar 

  11. Wong KT, Zoltowski MD: Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation. IEEE Transactions on Antennas and Propagation 1997, 45(10):1467–1474. 10.1109/8.633852

    Article  Google Scholar 

  12. Nehorai A, Tichavsky P: Cross-product algorithms for source tracking using an EM vector sensor. IEEE Transactions on Signal Processing 1999, 47(10):2863–2867. 10.1109/78.790667

    Article  Google Scholar 

  13. Ko CC, Zhang J, Nehorai A: Separation and tracking of multiple broadband sources with one electromagnetic vector sensor. IEEE Transactions on Aerospace and Electronic Systems 2002, 38(3):1109–1116. 10.1109/TAES.2002.1039429

    Article  Google Scholar 

  14. Wong KT: Blind beamforming geolocation for wideband-FFHs with unknown hop-sequences. IEEE Transactions on Aerospace and Electronic Systems 2001, 37(1):65–76. 10.1109/7.913668

    Article  Google Scholar 

  15. Rahamim D, Tabrikian J, Shavit R: Source localization using vector sensor array in a multipath environment. IEEE Transactions on Signal Processing 2004, 52(11):3096–3103. 10.1109/TSP.2004.836456

    Article  Google Scholar 

  16. Wong KT, Zoltowski MD: Self-Initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Transactions on Antennas and Propagation 2000, 48: 1235–1245. 10.1109/8.884492

    Article  Google Scholar 

  17. Wong KT, Zoltowski MD: Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Transactions on Antennas and Propagation 2000, 48(5):671–681. 10.1109/8.855485

    Article  Google Scholar 

  18. Zoltowski MD, Wong KT: ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing 2000, 48(8):2195–2204. 10.1109/78.852000

    Article  Google Scholar 

  19. Zoltowski MD, Wong KT: Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing 2000, 48(8):2205–2210. 10.1109/78.852001

    Article  Google Scholar 

  20. Lemma AN, Van Der Veen AJ, Deprettere EF: Analysis of joint angle-frequency estimation using ESPRIT. IEEE Transactions on Signal Processing 2003, 51(5):1264–1283. 10.1109/TSP.2003.810306

    Article  MathSciNet  Google Scholar 

  21. Lemma AN, Van Der Veen AJ, Deprettere EF: Joint angle-frequency estimation using multi-resolution ESPRIT. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 4: 1957–1960.

    Google Scholar 

  22. Zoltowski MD, Mathews CP: Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling. IEEE Transactions on Signal Processing 1994, 42(10):2781–2794. 10.1109/78.324743

    Article  Google Scholar 

  23. Roy R, Kailath T: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(7):984–995. 10.1109/29.32276

    Article  Google Scholar 

  24. Wong KT, Zoltowski MD: High accuracy 2D angle estimation with extended aperture vector sensor arrays. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 5: 2789–2792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ji.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ji, F., Kwong, S. Frequency and 2D Angle Estimation Based on a Sparse Uniform Array of Electromagnetic Vector Sensors. EURASIP J. Adv. Signal Process. 2006, 080720 (2006). https://doi.org/10.1155/ASP/2006/80720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/ASP/2006/80720

Keywords