Skip to main content

A Gradient-Based Optimum Block Adaptation ICA Technique for Interference Suppression in Highly Dynamic Communication Channels

Abstract

The fast fixed-point independent component analysis (ICA) algorithm has been widely used in various applications because of its fast convergence and superior performance. However, in a highly dynamic environment, real-time adaptation is necessary to track the variations of the mixing matrix. In this scenario, the gradient-based online learning algorithm performs better, but its convergence is slow, and depends on a proper choice of convergence factor. This paper develops a gradient-based optimum block adaptive ICA algorithm (OBA/ICA) that combines the advantages of the two algorithms. Simulation results for telecommunication applications indicate that the resulting performance is superior under time-varying conditions, which is particularly useful in mobile communications.

References

  1. 1.

    Lee T-W, Lewicki MS, Sejnowski TJ: ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000, 22(10):1078–1089. 10.1109/34.879789

    Article  Google Scholar 

  2. 2.

    Ristaniemi T, Joutsensalo J: Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Processing 2002, 82(3):417–431. 10.1016/S0165-1684(01)00194-3

    Article  Google Scholar 

  3. 3.

    Castedo L, Escudero C, Dapena A: A blind signal separation method for multiuser communications. IEEE Transactions on Signal Processing 1997, 45(5):1343–1348. 10.1109/78.575706

    MathSciNet  Article  Google Scholar 

  4. 4.

    Malaroiu S, Kiviluoto K, Oja E: Time series prediction with independent component analysis. Proceedings of International Conference on Advanced Investment Technology, January 2000, Gold Coast, Australia

    Google Scholar 

  5. 5.

    McKeown M, Makeig S, Brown S, et al.: Blind separation of functional magnetic resonance imaging (fMRI) data. Human Brain Mapping 1998, 6(5–6):368–372. 10.1002/(SICI)1097-0193(1998)6:5/6<368::AID-HBM7>3.0.CO;2-E

    Article  Google Scholar 

  6. 6.

    Isbell CL, Viola P: Restructuring sparse high-dimensional data for effective retrieval. In Advances in Neural Information Processing Systems. Volume 11. MIT Press, Cambridge, Mass, USA; 1999.

    Google Scholar 

  7. 7.

    Hyvärinen A, Oja E: A fast fixed-point algorithm for independent component analysis. Neural Computation 1997, 9(7):1483–1492. 10.1162/neco.1997.9.7.1483

    Article  Google Scholar 

  8. 8.

    Hyvärinen A: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999, 10(3):626–634. 10.1109/72.761722

    Article  Google Scholar 

  9. 9.

    Malouche Z, Macchi O: Adaptive unsupervised extraction of one component of a linear mixture with a single neuron. IEEE Transactions on Neural Networks 1998, 9(1):123–138. 10.1109/72.655034

    Article  Google Scholar 

  10. 10.

    Gaeta M, Lacoume J-L: Source separation without prior knowledge: the maximum likelihood solution. Proceedings of the European Signal Processing Conference (EUSIPCO '90), September 1990, Barcelona, Spain 621–624.

    Google Scholar 

  11. 11.

    Pham D-T: Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Transactions on Signal Processing 1996, 44(11):2768–2779. 10.1109/78.542183

    Article  Google Scholar 

  12. 12.

    Comon P: Independent component analysis, a new concept. Signal Processing 1994, 36(3):287–314. 10.1016/0165-1684(94)90029-9

    Article  Google Scholar 

  13. 13.

    Principe J, Xu D, Fisher JW III: Information-theoretic learning. In Unsupervised Adaptive Filtering. Volume I. Edited by: Haykin S. John Wiley & Sons, New York, NY, USA; 2000:265–319.

    Google Scholar 

  14. 14.

    Comon P, Mourrain B: Decomposition of quantics in sums of powers of linear forms. Signal Processing 1996, 53(2–3):93–107. 10.1016/0165-1684(96)00079-5

    Article  Google Scholar 

  15. 15.

    Cardoso J-F: High-order contrasts for independent component analysis. Neural Computation 1999, 11(1):157–192. 10.1162/089976699300016863

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yeredor A: Blind source separation via the second characteristic function. Signal Processing 2000, 80(5):897–902. 10.1016/S0165-1684(00)00062-1

    Article  Google Scholar 

  17. 17.

    Hyvarienen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.

    Google Scholar 

  18. 18.

    Sutton RS: Adapting bias by gradient descent: an incremental version of delta-bar-delta. Proceedings of the 10th National Conference on Artificial Intelligence, July 1992, San Jose, Calif, USA 171–176.

    Google Scholar 

  19. 19.

    Murata N, Müller K-R, Ziehe A, Amari S: Adaptive on-line learning in changing environments. Advances in Neural Information Processing Systems (NIPS '96), December 1996, Denver, Colo, USA 9: 599–605.

    Google Scholar 

  20. 20.

    Murata N, Kawanabe M, Ziehe A, Müller K, Amari S: On-line learning in changing environments with applications in supervised and unsupervised learning. Neural Networks 2002, 15(4–6):743–760.

    Article  Google Scholar 

  21. 21.

    Orr GB: Dynamics and algorithms for stochastic search, M.S. thesis. Department of Computer Science and Engineering, Oregon Graduate Institute, Beaverton, Ore, USA; 1995.

    Google Scholar 

  22. 22.

    Bottou L: Online algorithms and stochastic approximations. In Online Learning in Neural Networks. Edited by: Saad D. Cambridge University Press, Cambridge, UK; 1998:9–42.

    Google Scholar 

  23. 23.

    Orr GB, Leen TK: Using curvature information for fast stochastic search. In Advances in Neural Information Processing Systems. Volume 9. Edited by: Mozer M, Jordan M, Petsche T. MIT Press, Cambridge, Mass, USA; 1997.

    Google Scholar 

  24. 24.

    Ristaniemi T, Joutsensalo J: Advanced ICA-based receivers for DS-CDMA systems. Proceedings of IEEE International Conference on Personal, Indoor, and Mobile Radio, Communications, September 2000, London, UK

    Google Scholar 

  25. 25.

    Yang T, Mikhael WB: A general approach for image and co-channel interference suppression in diversity wireless receivers employing ICA. Journal of Circuits, Systems, and Signal Processing 2004, 23(4):317–327.

    MATH  Google Scholar 

  26. 26.

    Kostanic I, Mikhael WB: Blind source separation technique for reduction of co-channel interference. Electronics Letters 2002, 38(20):1210–1211. 10.1049/el:20020817

    Article  Google Scholar 

  27. 27.

    Leong WY, Holmer J: Implementing ICA in blind multiuser detection. IEEE International Symposium on Communications and Information Technologies, October 2004, Sapporo, Japan 2: 947–952.

    Article  Google Scholar 

  28. 28.

    Mikhael WB, Wu F: A fast block FIR adaptive digital filtering algorithm with individual adaptation of parameters. IEEE Transactions on Circuits and Systems 1989, 36(1):1–10. 10.1109/31.16558

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wasfy B. Mikhael.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikhael, W.B., Yang, T. A Gradient-Based Optimum Block Adaptation ICA Technique for Interference Suppression in Highly Dynamic Communication Channels. EURASIP J. Adv. Signal Process. 2006, 084057 (2006). https://doi.org/10.1155/ASP/2006/84057

Download citation

Keywords

  • Independent Component Analysis
  • Mobile Communication
  • Fast Convergence
  • Online Learning
  • Dynamic Communication