Skip to main content

Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique

Abstract

In stereophonic acoustic echo cancellation (SAEC) problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length). The proposed schemes are based on pairwise optimal weight realization (POWER) technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization) to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE).

References

  1. 1.

    Fujii T, Shimada S: A note on multi-channel echo cancellers. CS84-178, IEICE, January 1985, in Japanese

    Google Scholar 

  2. 2.

    Sondhi MM, Morgan DR: Acoustic echo cancellation for stereophonic teleconferencing. Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (ASSP '91), October 1991 141–142.

    Google Scholar 

  3. 3.

    Sondhi MM, Morgan DR, Hall JL: Stereophonic acoustic echo cancellation—an overview of the fundamental problem. IEEE Signal Processing Letters 1995, 2(8):148–151. 10.1109/97.404129

    Article  Google Scholar 

  4. 4.

    Benesty J, Amand F, Gilloire A, Grenier Y: Adaptive filtering algorithms for stereophonic acoustic echo cancellation. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP '95), May 1995, Detroit, Mich, USA 5: 3099–3102.

    Google Scholar 

  5. 5.

    Benesty J, Morgan DR, Sondhi MM: A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. IEEE Transactions on Speech and Audio Processing 1998, 6(2):156–165. 10.1109/89.661474

    Article  Google Scholar 

  6. 6.

    Gänsler T, Benesty J: Stereophonic acoustic echo cancellation and two-channel adaptive filtering: an overview. International Journal of Adaptive Control and Signal Processing 2000, 14(6):565–586. 10.1002/1099-1115(200009)14:6<565::AID-ACS604>3.0.CO;2-2

    Article  Google Scholar 

  7. 7.

    Gay SL, Benesty J (Eds): Acoustic Signal Processing for Telecommunication. Kluwer Academic, Boston, Mass, USA; 2000.

    Google Scholar 

  8. 8.

    Eneroth P, Gay SL, Gänsler T, Benesty J: A real-time implementation of a stereophonic acoustic echo canceler. IEEE Transactions on Speech and Audio Processing 2001, 9(5):513–523. 10.1109/89.928916

    Article  Google Scholar 

  9. 9.

    Gänsler T, Benesty J: Multichannel acoustic echo cancellation: what's new? Proceedings of the 7th International Workshop on Acoustic Echo and Noise Control (IWAENC '01), September 2001, Darmstadt, Germany

    Google Scholar 

  10. 10.

    Ikeda K, Sakamoto R: Convergence analyses of stereo acoustic echo cancelers with preprocessing. IEEE Transactions on Signal Processing 2003, 51(5):1324–1334. 10.1109/TSP.2003.810301

    MathSciNet  Article  Google Scholar 

  11. 11.

    Benesty J, Huang Y (Eds): Adaptive Signal Processing: Applications to Real-World Problems. Springer, Berlin, Germany; 2003.

    Google Scholar 

  12. 12.

    Sugiyama A, Hirano A, Nakayama K: Acoustic echo cancellation for conference systems. Proceedings of the European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 17–20.

    Google Scholar 

  13. 13.

    Buchner H, Benesty J, Kellermann W: Generalized multichannel frequency-domain adaptive filtering: efficient realization and application to hands-free speech communication. Signal Processing 2005, 85(3):549–570. 10.1016/j.sigpro.2004.07.029

    Article  Google Scholar 

  14. 14.

    Joncour Y, Sugiyama A: A stereo echo canceler with pre-processing for correct echo-path identification. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3677–3680.

    Google Scholar 

  15. 15.

    Sugiyama A, Joncour Y, Hirano A: A stereo echo canceler with correct echo-path identification based on an input-sliding technique. IEEE Transactions on Signal Processing 2001, 49(11):2577–2587. 10.1109/78.960405

    Article  Google Scholar 

  16. 16.

    Ali M: Stereophonic acoustic echo cancellation system using time-varying all-pass filtering for signal decorrelation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3689–3692.

    Google Scholar 

  17. 17.

    Benesty J, Morgan DR, Hall JL, Sondhi MM: Stereophonic acoustic echo cancellation using nonlinear transformations and comb filtering. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3673–3676.

    Google Scholar 

  18. 18.

    Gänsler T, Eneroth P: Influence of audio coding on stereophonic acoustic echo cancellation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3649–3652.

    Google Scholar 

  19. 19.

    Gilloire A, Turbin V: Using auditory properties to improve the behaviour of stereophonic acoustic echo cancellers. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3681–3684.

    Google Scholar 

  20. 20.

    Shimauchi S, Haneda Y, Makino S, Kaneda Y: New configuration for a stereo echo canceller with nonlinear pre-processing. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), May 1998, Seattle, Wash, USA 6: 3685–3688.

    Google Scholar 

  21. 21.

    Hirano A, Nakayama K, Watanabe K: Convergence analysis of stereophonic echo canceller with pre-processing—relation between pre-processing and convergence. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '99), March 1999, Phoenix, Ariz, USA 2: 861–864.

    Google Scholar 

  22. 22.

    Gänsler T, Benesty J: New insights into the stereophonic acoustic echo cancellation problem and an adaptive nonlinearity solution. IEEE Transactions on Speech and Audio Processing 2002, 10(5):257–267. 10.1109/TSA.2002.800554

    Article  Google Scholar 

  23. 23.

    Yukawa M, Yamada I: Efficient adaptive stereo echo canceling schemes based on simultaneous use of multiple state data. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2004, E87-A(8):1949–1957.

    Google Scholar 

  24. 24.

    Yamada I: Adaptive projected subgradient method: unified view for projection based adaptive algorithms. Journal of IEICE 2003, 86(8):654–658.

    Google Scholar 

  25. 25.

    Yamada I, Ogura N: Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numerical Functional Analysis and Optimization 2004, 25(7&8):593–617.

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Cavalcante RLG, Yamada I, Sakaniwa K: A fast blind MAI reduction based on adaptive projected subgradient method. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2004, E87-A(8):1973–1980.

    Google Scholar 

  27. 27.

    Yukawa M, Cavalcante RLG, Yamada I: Efficient blind MAI suppression in DS/CDMA systems by embedded constraint parallel projection techniques. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2005, E88-A(8):2062–2071. 10.1093/ietfec/e88-a.8.2062

    Article  Google Scholar 

  28. 28.

    Yamada I, Slavakis K, Yamada K: An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques. IEEE Transactions on Signal Processing 2002, 50(5):1091–1101. 10.1109/78.995065

    Article  Google Scholar 

  29. 29.

    Deutsch FR: Best Approximation in Inner Product Spaces. Springer, Berlin, Germany; 2001.

    Google Scholar 

  30. 30.

    Censor Y, Zenios SA: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York, NY, USA; 1997.

    Google Scholar 

  31. 31.

    Yukawa M, Yamada I: Acceleration of adaptive parallel projection algorithms by pairwise optimal weight realization. Proceedings of the 12th European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 713–716.

    Google Scholar 

  32. 32.

    Yukawa M, Yamada I: Pairwise optimal weight realization—acceleration technique for set-theoretic adaptive parallel subgradient projection algorithm. 2005.https://doi.org/www.comm.ss.titech.ac.jp/~masahiro/publications.html) IEEE Transactions on Signal Processing, accepted (For its preliminary version, see: Masahiro Yukawa and Isao Yamada, "On optimality of POWER weighting technique for adaptive filtering," Technical Report of IEICE, SIP2005-7, vol. 105, no. 29, pp.37–42, April 2005,

    Google Scholar 

  33. 33.

    Hinamoto T, Maekawa S: Extended theory of learning identification. Transactions of the Institute of Electrical Engineers of Japan 1975, 95(10):227–234.

    Google Scholar 

  34. 34.

    Ozeki K, Omeda T: An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Transactions of IEICE 1984, 67-A(5):126–132.

    MathSciNet  Google Scholar 

  35. 35.

    Haykin S: Adaptive Filter Theory. 3rd edition. Prentice-Hall, Upper Saddle River, NJ, USA; 1996.

    Google Scholar 

  36. 36.

    Sayed AH: Fundamentals of Adaptive Filtering. John Wiley & Sons, New York, NJ, USA; 2003.

    Google Scholar 

  37. 37.

    Combettes PL: The foundations of set theoretic estimation. Proceedings of the IEEE 1993, 81(2):182–208.

    Article  Google Scholar 

  38. 38.

    Combettes PL: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Transactions on Image Processing 1997, 6(4):493–506. 10.1109/83.563316

    Article  Google Scholar 

  39. 39.

    Gollamudi S, Nagaraj S, Kapoor S, Huang YH: Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Processing Letters 1998, 5(5):111–114. 10.1109/97.668945

    Article  Google Scholar 

  40. 40.

    Guo L, Ekpenyong A, Huang YH: Frequency-domain adaptive filtering—a set-membership approach. Proceedings of the 37th Asilomar Conference on Signals, Systems, and Computers, November 2003, Pacific Grove, Calif, USA 2073–2077.

    Google Scholar 

  41. 41.

    Bauschke HH, Borwein JM: On projection algorithms for solving convex feasibility problems. SIAM Review 1996, 38(3):367–426. 10.1137/S0036144593251710

    MathSciNet  Article  Google Scholar 

  42. 42.

    Ogura N, Yamada I: A deep outer approximating half space of the level set of certain quadratic functions. Journal of Nonlinear and Convex Analysis 2005, 6(1):187–201.

    MathSciNet  Article  Google Scholar 

  43. 43.

    Nagumo J, Noda A: A learning method for system identification. IEEE Transactions on Automatic Control 1967, 12(3):282–287.

    Article  Google Scholar 

  44. 44.

    Hassibi B, Sayed AH, Kailath T: optimality of the LMS algorithm. IEEE Transactions on Signal Processing 1996, 44(2):267–280. 10.1109/78.485923

    Article  Google Scholar 

  45. 45.

    Yukawa M, Yamada I: Adaptive parallel subgradient projection techniques with input sliding technique for stereophonic acoustic echo cancellation. in Proceedings of the 8th IEEE International Workshop on Acoustic Echo and Noise Control (IWAENC '01), September 2003, Kyoto, Japan 55–58.

    Google Scholar 

  46. 46.

    Gay SL: Dynamically regularized fast RLS with application to echo cancellation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 2: 957–960.

    Google Scholar 

  47. 47.

    Gay SL, Tavathia S: The fast affine projection algorithm. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '95), May 1995, Detroit, Mich, USA 5: 3023–3026.

    Google Scholar 

  48. 48.

    Rupp M: A family of adaptive filter algorithms with decorrelating properties. IEEE Transactions on Signal Processing 1998, 46(3):771–775. 10.1109/78.661344

    Article  Google Scholar 

  49. 49.

    Tanaka M, Makino S, Kojima J: A block exact fast affine projection algorithm. IEEE Transactions on Speech and Audio Processing 1999, 7(1):79–86. 10.1109/89.736333

    Article  Google Scholar 

  50. 50.

    Breining C, Dreiseitel P, Hänsler E, et al.: Acoustic echo control. An application of very-high-order adaptive filters. IEEE Signal Processing Magazine 1999, 16(4):42–69. 10.1109/79.774933

    Article  Google Scholar 

  51. 51.

    Sankaran SG, Beex AA(Louis): Convergence behavior of affine projection algorithms. IEEE Transactions on Signal Processing 2000, 48(4):1086–1096. 10.1109/78.827542

    MathSciNet  Article  Google Scholar 

  52. 52.

    Botto J-L, Moustakides GV: Stabilizing the fast Kalman algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989, 37(9):1342–1348. 10.1109/29.31289

    Article  Google Scholar 

  53. 53.

    Moustakides GV: Correcting the instability due to finite precision of the fast Kalman identification algorithms. Signal Processing 1989, 18: 33–42. 10.1016/0165-1684(89)90060-1

    Article  Google Scholar 

  54. 54.

    Slock DTM, Kailath T: Numerically stable fast transversal filters for recursive least squares adaptive filtering. IEEE Transactions on Signal Processing 1991, 39(1):92–114. 10.1109/78.80769

    Article  Google Scholar 

  55. 55.

    Glentis G-O, Berberidis K, Theodoridis S: A unified view—efficient least squares adaptive algorithms for FIR transversal filtering. IEEE Signal Processing Magazine 1999, 16(4):13–41. 10.1109/79.774932

    Article  Google Scholar 

  56. 56.

    Haykin S, Sayed AH, Zeidler JR, Yee P, Wei PC: Adaptive tracking of linear time-variant systems by extended RLS algorithms. IEEE Transactions on Signal Processing 1997, 45(5):1118–1128. 10.1109/78.575687

    Article  Google Scholar 

  57. 57.

    Leung S-H, So CF: Gradient-based variable forgetting factor RLS algorithm in time-varying environments. IEEE Transactions on Signal Processing 2005, 53(8):3141–3150.

    MathSciNet  Article  Google Scholar 

  58. 58.

    Sankaran SG, Beex AA(Louis): Stereophonic echo cancellation using NLMS with orthogonal correction factors. Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC '99), September 1999, Pocono Manor, Pa, USA 40–43.

    Google Scholar 

  59. 59.

    Lai J-T, Wu A-Y, Yeh C-C: A novel multipath matrix algorithm for exact room response identification in stereo echo cancellation. Proceedings of the IEEE Workshop on Signal Processing Systems (SIPS '03), August 2003, Seoul, Korea 236–240.

    Google Scholar 

  60. 60.

    Hirano A, Nakayama K, Someda D, Tanaka M: Stereophonic acoustic echo canceller without pre-processing. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), May 2004, Montreal, Canada 4: 145–148.

    Google Scholar 

  61. 61.

    Khong AWH, Naylor PA: Reducing inter-channel coherence in stereophonic acoustic echo cancellation using partial update adaptive filters. Proceedings of the European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 405–408.

    Google Scholar 

  62. 62.

    Morgan DR, Hall JL, Benesty J: Investigation of several types of nonlinearities for use in stereo acoustic echo cancellation. IEEE Transactions on Speech and Audio Processing 2001, 9(6):686–696. 10.1109/89.943346

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masahiro Yukawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yukawa, M., Murakoshi, N. & Yamada, I. Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique. EURASIP J. Adv. Signal Process. 2006, 084797 (2006). https://doi.org/10.1155/ASP/2006/84797

Download citation

Keywords

  • Information Technology
  • Computational Complexity
  • Conventional Method
  • Quantum Information
  • Optimal Weight