Skip to content

Advertisement

  • Research Article
  • Open Access

The Finite Heisenberg-Weyl Groups in Radar and Communications

  • 1,
  • 2 and
  • 3
EURASIP Journal on Advances in Signal Processing20062006:085685

https://doi.org/10.1155/ASP/2006/85685

  • Received: 6 April 2005
  • Accepted: 18 April 2005
  • Published:

Abstract

We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

Keywords

  • Radar
  • Information Technology
  • Quantum Information
  • Spreading Sequence
  • Unify Basis

[1234567891011121314151617181920212223242526272829303132333435363738]

Authors’ Affiliations

(1)
Defence Science and Technology Organisation, P.O. Box 1500, Edinburgh, 5111, Australia
(2)
Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
(3)
Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, 3010, Australia

References

  1. Folland GB: Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ, USA; 1989.MATHGoogle Scholar
  2. Miller W: Topics in harmonic analysis with applications to radar and sonar. In Radar and Sonar, Part I, IMA Volumes in Mathematics and Its Applications. Edited by: Blahut R, Miller W, Wilcox C. Springer, New York, NY, USA; 1991.Google Scholar
  3. Auslander L, Tolimieri R: Radar ambiguity functions and group theory. SIAM Journal on Mathematical Analysis 1985, 16(3):577-601. 10.1137/0516043MathSciNetView ArticleMATHGoogle Scholar
  4. Mackey GW: Some remarks on symplectic automorphisms. Proceedings of the American Mathematical Society 1965, 16: 393-397. 10.1090/S0002-9939-1965-0177064-5MathSciNetView ArticleMATHGoogle Scholar
  5. Segal IE: Transforms for operators and symplectic automorphisms over a locally compact abelian group. Mathematica Scandinavica 1963, 13: 31-43.MathSciNetMATHGoogle Scholar
  6. Weil A: Sur certains groupes d'opérateurs unitaires. Acta Mathematica 1964, 111: 143-211. 10.1007/BF02391012MathSciNetView ArticleMATHGoogle Scholar
  7. Richman MS, Parks TW, Shenoy RG: Discrete-time, discrete-frequency, time-frequency analysis. IEEE Transactions on Signal Processing 1998, 46(6):1517-1527. 10.1109/78.678465View ArticleMATHGoogle Scholar
  8. Tolimieri R, An M: Time-Frequency Representations. Birkhäuser Boston, Boston, Mass, USA; 1998.MATHGoogle Scholar
  9. Bottomley GE: Signature sequence selection in a CDMA system with orthogonal coding. IEEE Transactions on Vehicular Technology 1993, 42(1):62-68. 10.1109/25.192388View ArticleGoogle Scholar
  10. Yang K, Kim Y-K, Vijay Kumar P: Quasi-orthogonal sequences for code-division multiple-access systems. IEEE Transactions on Information Theory 2000, 46(3):982-993. 10.1109/18.841175View ArticleMathSciNetMATHGoogle Scholar
  11. Welti G: Quaternary codes for pulsed radar. IEEE Transactions on Information Theory 1960, 6(3):400-408. 10.1109/TIT.1960.1057572View ArticleGoogle Scholar
  12. Golay M: Complementary series. IEEE Transactions on Information Theory 1961, 7(2):82-87. 10.1109/TIT.1961.1057620MathSciNetView ArticleGoogle Scholar
  13. Budisin SZ, Popovic BM, Indjin IM: Designing radar signals using complementary sequences. IEEE Transactions on Aerospace and Electronic Systems 1985, 21(2):170-179.Google Scholar
  14. Macwilliams FJ, Sloane NJA: The Theory of Error Correcting Codes. North-Holland Elsevier, Amsterdam, The Netherlands; 1983.MATHGoogle Scholar
  15. Calderbank AR, Cameron PJ, Kantor WM, Seidel JJ: -Kerdock codes, orthogonal spreads, and extremal euclidean line-sets. Proceedings of the London Mathematical Society 1997, 75(2):436-480. 10.1112/S0024611597000403MathSciNetView ArticleMATHGoogle Scholar
  16. Reiter H: Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, London, UK; 1968.MATHGoogle Scholar
  17. Renes JM, Blume-Kohout R, Scott AJ, Caves CM: Symmetric informationally complete quantum measurements. Journal of Mathematical Physics 2004, 45(6):2171-2180. 10.1063/1.1737053MathSciNetView ArticleMATHGoogle Scholar
  18. Wilcox CH: The synthesis problem for radar ambiguity functions. In Radar and Sonar, Part I, IMA Series in Mathematics and Its Applications. Volume 32. Springer, New York, NY, USA; 1991:229-260.Google Scholar
  19. Feichtinger HG, Kozek W: Quantization of TF lattice-invariant operators on elementary LCA groups. In Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis. Edited by: Feichtinger HG, Strohmer T. Birkhäuser, Boston, Mass, USA; 1998:233-266. chapter 7View ArticleGoogle Scholar
  20. Delsarte P, Goethals JM, Seidel JJ: Bounds for systems of lines and Jacobi polynomials. Philips Research Reports 1975, 30(3):91-105.MATHGoogle Scholar
  21. Lemmens PWH, Seidel JJ: Equiangular lines. Journal of Algebra 1973, 24(3):494-512. 10.1016/0021-8693(73)90123-3MathSciNetView ArticleMATHGoogle Scholar
  22. Hoggar SG: 64 lines from a quaternionic polytope. Geometriae Dedicata 1998, 69(3):287-289. 10.1023/A:1005009727232MathSciNetView ArticleMATHGoogle Scholar
  23. Strohmer T, Heath RW Jr.: Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis 2003, 14(3):257-275. 10.1016/S1063-5203(03)00023-XMathSciNetView ArticleMATHGoogle Scholar
  24. Perelomov AM: Generalized Coherent States and Their Applications. Springer, Berlin, Germany; 1986.View ArticleMATHGoogle Scholar
  25. Daubechies I: Ten Lectures on Wavelets. SIAM, Philadelphia, Pa, USA; 1992.View ArticleMATHGoogle Scholar
  26. Perelomov AM: Coherent states for arbitrary Lie group. Communications in Mathematical Physics 1972, 26(3):222-236. 10.1007/BF01645091MathSciNetView ArticleMATHGoogle Scholar
  27. Brown EH: Generalizations of kervaire's invariant. Annals of Mathematics 1972, 95: 368-383. 10.2307/1970804MathSciNetView ArticleGoogle Scholar
  28. Pottie GJ, Calderbank AR: Channel coding strategies for cellular radio. IEEE Transactions on Vehicular Technology 1995, 44(4):763-770. 10.1109/25.467960View ArticleGoogle Scholar
  29. Costas JP: A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proceedings of the IEEE 1984, 72(8):996-1009.View ArticleGoogle Scholar
  30. Kerdock AM: A class of low rate nonlinear binary codes. Information and Control 1972, 20(2):182-187. 10.1016/S0019-9958(72)90376-2MathSciNetView ArticleMATHGoogle Scholar
  31. Hammons AR Jr., Kumar PV, Calderbank AR, Sloane NJA, Solé P:The -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 1994, 40(2):301-319. 10.1109/18.312154View ArticleMathSciNetMATHGoogle Scholar
  32. Wootters WK, Fields BD: Optimal state-determination by mutually unbiased measurements. Annals of Physics 1989, 191(2):363-381. 10.1016/0003-4916(89)90322-9MathSciNetView ArticleGoogle Scholar
  33. Davis JA, Jedwab J: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Transactions on Information Theory 1999, 45(7):2397-2417. 10.1109/18.796380MathSciNetView ArticleMATHGoogle Scholar
  34. Shapiro HS: Extremal problems for polynomials and power series, Sc.M. thesis. Massachusetts Institute of Technology, Cambridge, Mass, USA; 1951.Google Scholar
  35. Golay M: Multislit spectrometry. Journal of the Optical Society of America June 1949, 39: 437-444. 10.1364/JOSA.39.000437View ArticleGoogle Scholar
  36. Budisin SZ: New complementary pairs of sequences. Electronics Letters 1990, 26(13):881-883. 10.1049/el:19900576View ArticleGoogle Scholar
  37. Craigen R: Complex golay sequences. Journal of Combinatorial Mathematics and Combinatorial Computing 1994, 15: 161-169.MathSciNetMATHGoogle Scholar
  38. Calderbank AR, Rains EM, Shor PW, Sloane NJA: Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory 1998, 44(4):1369-1387. 10.1109/18.681315MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Howard et al. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement