Skip to main content

Robust System and Cross-Layer Design for H.264/AVC-Based Wireless Video Applications


H.264/AVC is an essential component in emerging wireless video applications, thanks to its excellent compression efficiency and network-friendly design. However, a video coding standard itself is only a single component within a complex system. Its effectiveness strongly depends on the appropriate configuration of encoders, decoders, as well as transport and network features. The applicability of different features depends on application constraints, the availability and quality of feedback and cross-layer information, and the accessible quality-of-service (QoS) tools in modern wireless networks. We discuss robust integration of H.264/AVC in wireless real-time video applications. Specifically, the use of different coding and transport-related features for different application types is elaborated. Guidelines for the selection of appropriate coding tools, encoder and decoder settings, as well as transport and network parameters are provided and justified. Selected simulation results show the superiority of lower layer error control over application layer error control and video error resilience features.


  1. 1.

    ITU-T and ISO/IEC, "Advanced Video Coding for Generic Audiovisual Services" , ITU-Recommendation H.264 and ISO IEC 14996-10 AVC, 2003

  2. 2.

    Talluri R: Error-resilient video coding in the ISO MPEG-4 standard. IEEE Communications Magazine 1998, 36(6):112–119. 10.1109/35.685373

    Article  Google Scholar 

  3. 3.

    Wang Y, Zhu Q-F: Error control and concealment for video communication: a review. Proceedings of the IEEE 1998, 86(5):974–997. 10.1109/5.664283

    Article  Google Scholar 

  4. 4.

    Wang Y, Wen G, Wenger S, Katsaggelos AK: Review of error resilient techniques for video communications. IEEE Signal Processing Magazine 2000, 17(4):61–82. 10.1109/79.855913

    Article  Google Scholar 

  5. 5.

    Zhu Q-F, Kerofsky L: Joint source coding, transport processing, and error concealment for H.323-based packet video. Visual Communications and Image Processing (VCIP '99), January 1999, San Jose, Calif, USA, Proceedings of SPIE 3653: 52–62.

    Article  Google Scholar 

  6. 6.

    Wenger S: H.264/AVC over IP. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):645–656. 10.1109/TCSVT.2003.814966

    Article  Google Scholar 

  7. 7.

    3GPP Technical Specification 3GPP TS 26.234, Rel-6,"Transparent end-to-end packet-switched streaming service (PSS); protocols and codecs "

  8. 8.

    3GPP Technical Specification 3GPP TS 26.346, Rel-6, "Multimedia multicast and broadcast service (MBMS); protocols and codecs "

  9. 9.

    3GPP Technical Specification 3GPP TS 26.110, "Circuit-switched video telephony (3G-324M)"

  10. 10.

    3GPP Technical Specification 3GPP TS 26.235 and 26.236, "Packet-switched conversational multimedia applications "

  11. 11.

    3GPP Technical Specification 3GPP TS 26.140 "Multimedia messaging service (MMS); media formats and codecs "

  12. 12.

    Wenger S, Stockhammer T, Hannuksela MM, Westerlund M, Singer D: RTP Payload Format for H.264 Video. IETF RFC3984, February 2005

    Book  Google Scholar 

  13. 13.

    Sullivan GJ, Wiegand T: Video compression - from concepts to the H.264/AVC standard. Proceedings of the IEEE 2005, 93(1):18–31.

    Article  Google Scholar 

  14. 14.

    Stockhammer T, Hannuksela MM, Wiegand T: H.264/AVC in wireless environments. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):657–673. 10.1109/TCSVT.2003.815167

    Article  Google Scholar 

  15. 15.

    Kumar S, Xu L, Mandal MK, Panchanathan S: Error resiliency schemes in H.264/AVC video coding standard. Journal of Visual Communication and Image Representation 2006, 17(2):425–450. (Special issue on H.264/AVC video coding standard) 10.1016/j.jvcir.2005.04.006

    Article  Google Scholar 

  16. 16.

    Ortega A, Ramchandran K: Rate-distortion techniques in image and video compression. IEEE Signal Processing Magazine 1998, 15(6):23–50. 10.1109/79.733495

    Article  Google Scholar 

  17. 17.

    Wiegand T, Lightstone M, Campbell TG, Mukherjee D, Mitra SK: Rate-distortion optimized mode selection for very low bit rate video coding and the emerging H.263 standard. IEEE Transactions on Circuits and Systems for Video Technology 1996, 6(2):182–190. 10.1109/76.488825

    Article  Google Scholar 

  18. 18.

    Wiegand T, Schwarz H, Joch A, Kossentini F, Sullivan GJ: Rate-constrained coder control and comparison of video coding standards. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):688–703. 10.1109/TCSVT.2003.815168

    Article  Google Scholar 

  19. 19.

    Stockhammer T, Kontopodis D, Wiegand T: Rate-distortion optimization for H.26L video coding in packet loss environment. Proceedings of the 12th International Packet Video Workshop (PVW '02), April 2002, Pittsburgh, Pa, USA

    Google Scholar 

  20. 20.

    Zhang R, Regunathan SL, Rose K: Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE Journal on Selected Areas in Communications 2000, 18(6):966–976. 10.1109/49.848250

    Article  Google Scholar 

  21. 21.

    Wiegand T, Färber N, Stuhlmüller K, Girod BF: Error-resilient video transmission using long-term memory motion-compensated prediction. IEEE Journal on Selected Areas in Communications 2000, 18(6):1050–1062. 10.1109/49.848255

    Article  Google Scholar 

  22. 22.

    Cote G, Shirani S, Kossentini F: Optimal mode selection and synchronization for robust video communications over error-prone networks. IEEE Journal on Selected Areas in Communications 2000, 18(6):952–965. 10.1109/49.848249

    Article  Google Scholar 

  23. 23.

    Yang H, Rose K: Recursive end-to-end distortion estimation with model-based cross-correlation approximation. Proceedings of International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 2: 469–472.

    Google Scholar 

  24. 24.

    Girod BF, Färber N: Feedback-based error control for mobile video transmission. Proceedings of the IEEE 1999, 87(10):1707–1723. 10.1109/5.790632

    Article  Google Scholar 

  25. 25.

    Fukunaga S, Nakai T, Inoue H: Error resilient video coding by dynamic replacing of reference pictures. Proceedings of Global Telecommunications Conference (GLOBECOM '96), November 1996, London, UK 3: 1503–1508.

    Google Scholar 

  26. 26.

    Wada M: Selective recovery of video packet loss using error concealment. IEEE Journal on Selected Areas in Communications 1989, 7(5):807–814. 10.1109/49.32344

    Article  Google Scholar 

  27. 27.

    Tomita Y, Kimura T, Ichikawa T: Error resilient modified inter-frame coding system for limited reference picture memories. Proceedings of Picture Coding Symposium (PCS '97), September 1997, Berlin, Germany 743–748.

    Google Scholar 

  28. 28.

    Nakai T, Tomita Y: Core experiments on feedback channel operation for H.263+. ITU-T SG15 LBC 96–308, November 1996

    Google Scholar 

  29. 29.

    Karczewicz M, Kurçeren R: The SP- and SI-frames design for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):637–644. 10.1109/TCSVT.2003.814969

    Article  Google Scholar 

  30. 30.

    Hsu C-Y, Ortega A, Khansari M: Rate control for robust video transmission over burst-error wireless channels. IEEE Journal on Selected Areas in Communications 1999, 17(5):756–773. Special issue on multimedia network radios 10.1109/49.768193

    Article  Google Scholar 

  31. 31.

    Lakshman TV, Ortega A, Reibman AR: VBR video: tradeoffs and potentials. Proceedings of the IEEE 1998, 86(5):952–973. 10.1109/5.664282

    Article  Google Scholar 

  32. 32.

    Roth G, Sjöberg R, Liebl G, Stockhammer T, Varsa V, Karczewicz M: Common test conditions for RTP/IP over 3GPP/3GPP2. ITU-T SG16 Doc. VCEG-N80, Santa Barbara, Calif, USA, September 2001

  33. 33.

    Wang Y-K, Hannuksela MM, Varsa V, Hourunranta A, Gabbouj M: The error concealment feature in the H.26L test model. Proceedings of IEEE Internantional Conference on Image Processing (ICIP '02), September 2002, Rochester, NY, USA 2: 729–732.

    Google Scholar 

  34. 34.

    3GPP Technical Specification 3GPP TS 25.346 : Introduction of the Multimedia Broadcast/Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2.

  35. 35.

    Stockhammer T, Liebl G, Jenkac H, Xu W: Flexible Outer Reed-Solomon Coding on RLC Layer for MBMS over GERAN. Proceedings of IEEE Semiannual Vehicular Technology Conference (VTC '04), May 2004, Milano, Italy

    Google Scholar 

  36. 36.

    Stockhammer T, Liebl G, Jenkac H: H.264/AVC video transmission over MBMS. Proceedings of IEEE International Workshop on Multimedia Signal Processing, September 2004, Siena, Italy

    Google Scholar 

  37. 37.

    Paila T, Luby M, Lehtonen R, Roca V, Walsh R: FLUTE - File Delivery over Unidirectional Transport. IETF RFC3926, October 2004

    Book  Google Scholar 

  38. 38.

    3GPP S4-050090 : Report of FEC selection for MBMS. SA-WG4, March 2005

  39. 39.

    Shokrollahi A: Raptor codes. Digital Fountain, DR2003-06-001, June 2003

    MATH  Google Scholar 

  40. 40.

    3GPP S4-050090 : Alignment of H.264/AVC NAL Units for MBMS. Siemens, February 2005

  41. 41.

    Rey J, Leon D, Miyazaki A, Varsa V, Hakenberg R: RTP Retransmission Payload Format. Internet Draft, draft-ietf-avt-rtp-retransmission-11.txt, March 2005

    Google Scholar 

  42. 42.

    Mehra P, Zakhor A: TCP-based video streaming using receiver-driven bandwidth sharing. Proceedings of the 13th International Packet Video Workshop (PVW '03), April 2003, Nantes, France

    Google Scholar 

  43. 43.

    Stockhammer T, Jenkac H, Kuhn G: Streaming video over variable bit-rate wireless channels. IEEE Transactions on Multimedia 2004, 6(2):268–277. 10.1109/TMM.2003.822795

    Article  Google Scholar 

  44. 44.

    Kalman M, Steinbach EG, Girod BF: Adaptive media playout for low-delay video streaming over error-prone channels. IEEE Transactions on Circuits and Systems on Video Technology 2004, 14(6):841–851. 10.1109/TCSVT.2004.828335

    Article  Google Scholar 

  45. 45.

    Chou PA, Miao Z: Rate-distortion optimized streaming of packetized media. to appear in IEEE Transactions on Multimedia

  46. 46.

    Stockhammer T, Walter M, Liebl G: Optimized H.264-based bitstream swiching for wireless video streaming. Proceedings of IEEE International Conference on Multimedia and Expo (ICME '05), July 2005, Amsterdam, The Netherlands

    Google Scholar 

  47. 47.

    Liebl G, Jenkac H, Stockhammer T, Buchner C, Klein A: Radio link buffer management and scheduling for video streaming over wireless shared channels. Proceedings of International Packet Video Workshop (PVW '04), July 2004, Irvine, Calif, USA

    Google Scholar 

  48. 48.

    Ribas-Corbera J, Chou PA, Regunathan S: A generalized hypothetical reference decoder for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):674–687. 10.1109/TCSVT.2003.814965

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Thomas Stockhammer.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Stockhammer, T. Robust System and Cross-Layer Design for H.264/AVC-Based Wireless Video Applications. EURASIP J. Adv. Signal Process. 2006, 089371 (2006).

Download citation


  • Video Code
  • Compression Efficiency
  • Video Code Standard
  • Error Resilience
  • Application Constraint