Skip to main content

Differential Space-Time Coding Scheme Using Star Quadrature Amplitude Modulation Method


Differential space-time coding (DSTC) has received much interest as it obviates the requirement of the channel state information at the receiver while maintaining the desired properties of space-time coding techniques. In this paper, by introducing star quadrature amplitude modulation (star QAM) method, two kinds of multiple amplitudes DSTC schemes are proposed. One is based on differential unitary space-time coding (DUSTC) scheme, and the other is based on differential orthogonal space-time coding (DOSTC) scheme. Corresponding bit-error-rate (BER) performance and coding-gain analysis are given, respectively. The proposed schemes can avoid the performance loss of conventional DSTC schemes based on phase-shift keying (PSK) modulation in high spectrum efficiency via multiple amplitudes modulation. Compared with conventional PSK-based DSTC schemes, the developed schemes have higher spectrum efficiency via carrying information not only on phases but also on amplitudes, and have higher coding gain. Moreover, the first scheme can implement low-complexity differential modulation and different code rates and be applied to any number of transmit antennas; while the second scheme has simple decoder and high code rate in the case of 3 and 4 antennas. The simulation results show that our schemes have lower BER when compared with conventional DUSTC and DOSTC schemes.


  1. 1.

    Al-Dhahir N, Fragouli C, Stamoulis A, Younis W, Calderbank R: Space-time processing for broadband wireless access. IEEE Communications Magazine 2002, 40(9):136–142. 10.1109/MCOM.2002.1031840

    Article  Google Scholar 

  2. 2.

    Tarokh V, Seshadri N, Calderbank AR: Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory 1998, 44(2):744–765. 10.1109/18.661517

    MathSciNet  Article  Google Scholar 

  3. 3.

    Tarokh V, Jafarkhani H, Calderbank AR: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999, 45(5):1456–1467. 10.1109/18.771146

    MathSciNet  Article  Google Scholar 

  4. 4.

    Gao C, Haimovich AM: BER analysis of MPSK space-time block codes with differential detection. IEEE Communications Letters 2003, 7(7):314–316. 10.1109/LCOMM.2003.814710

    Article  Google Scholar 

  5. 5.

    Hochwald BM, Marzetta TL: Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory 2000, 46(2):543–564. 10.1109/18.825818

    MathSciNet  Article  Google Scholar 

  6. 6.

    Hochwald BM, Sweldens W: Differential unitary space-time modulation. IEEE Transactions on Communications 2000, 48(12):2041–2052. 10.1109/26.891215

    Article  Google Scholar 

  7. 7.

    Hughes BL: Differential space-time modulation. IEEE Transactions on Information Theory 2000, 46(7):2567–2578. 10.1109/18.887864

    MathSciNet  Article  Google Scholar 

  8. 8.

    Tarokh V, Jafarkhani H: A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications 2000, 18(7):1169–1174. 10.1109/49.857917

    Article  Google Scholar 

  9. 9.

    Jafarkhani H, Tarokh V: Multiple transmit antenna differential detection from generalized orthogonal designs. IEEE Transactions on Information Theory 2001, 47(6):2626–2631. 10.1109/18.945280

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ganesan G, Stoica P: Space-time block codes: a maximum SNR approach. IEEE Transactions on Information Theory 2001, 47(4):1650–1656. 10.1109/18.923754

    MathSciNet  Article  Google Scholar 

  11. 11.

    Ganesan G, Stoica P: Differential modulation using space-time block codes. IEEE Signal Processing Letters 2002, 9(2):57–60. 10.1109/97.991138

    Article  Google Scholar 

  12. 12.

    Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York; 2001.

    Google Scholar 

  13. 13.

    Tao M, Cheng RS: Differential space-time block codes. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '01), November 2001, San Antonio, Tex, USA 2: 1098–1102.

    Article  Google Scholar 

  14. 14.

    Tjhung TT, Dong X, Adachi F, Tan KH: On diversity reception of narrow-band 16 STAR-QAM in fast Rician fading. IEEE Transactions on Vehicular Technology 1997, 46(4):923–932. 10.1109/25.653066

    Article  Google Scholar 

  15. 15.

    Chow YC, Nix AR, McGeehan JP: Analysis of 16-APSK modulation in AWGN and Rayleigh fading channel. Electronics Letters 1992, 28(17):1608–1610. 10.1049/el:19921023

    Article  Google Scholar 

  16. 16.

    Shokrollahi A, Hassibi B, Hochwald BM, Sweldens W: Representation theory for high-rate multiple-antenna code design. IEEE Transactions on Information Theory 2001, 47(6):2235–2367.

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xiangbin Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, X., Xu, D. & Bi, G. Differential Space-Time Coding Scheme Using Star Quadrature Amplitude Modulation Method. EURASIP J. Adv. Signal Process. 2006, 089849 (2006).

Download citation


  • Channel State Information
  • Code Rate
  • Performance Loss
  • Differential Modulation
  • Code Technique