Skip to main content

Least-Square Prediction for Backward Adaptive Video Coding

Abstract

Almost all existing approaches towards video coding exploit the temporal redundancy by block-matching-based motion estimation and compensation. Regardless of its popularity, block matching still reflects an ad hoc understanding of the relationship between motion and intensity uncertainty models. In this paper, we present a novel backward adaptive approach, named "least-square prediction" (LSP), and demonstrate its potential in video coding. Motivated by the duality between edge contour in images and motion trajectory in video, we propose to derive the best prediction of the current frame from its causal past using least-square method. It is demonstrated that LSP is particularly effective for modeling video material with slow motion and can be extended to handle fast motion by temporal warping and forward adaptation. For typical QCIF test sequences, LSP often achieves smaller MSE than, full-search, quarter-pel block matching algorithm (BMA) without the need of transmitting any overhead.

References

  1. 1.

    Jain JR, Jain AK: Displacement measurement and its application in interframe image coding. IEEE Transactions on Communications 1981, 29(12):1799–1808. 10.1109/TCOM.1981.1094950

    Article  Google Scholar 

  2. 2.

    Srinivasan R, Rao KR: Predictive coding based on efficient motion estimation. IEEE Transactions on Communications 1985, 33(8):888–896. 10.1109/TCOM.1985.1096398

    Article  Google Scholar 

  3. 3.

    Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A: Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 2003, 13(7):560–576.

    Article  Google Scholar 

  4. 4.

    Sullivan GJ, Wiegand T: Video compression-from concepts to the H.264/AVC standard. Proceedings of the IEEE 2005, 93(1):18–31.

    Article  Google Scholar 

  5. 5.

    Forsyth D, Ponce J: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.

    Google Scholar 

  6. 6.

    Kaup A: Object-based texture coding of moving video in MPEG-4. IEEE Transactions on Circuits and Systems for Video Technology 1999, 9(1):5–15. 10.1109/76.744271

    Article  Google Scholar 

  7. 7.

    Shapiro JM: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Acoustics, Speech, and Signal Processing 1993, 41(12):3445–3462.

    Article  Google Scholar 

  8. 8.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996, 6(3):243–250. 10.1109/76.499834

    Article  Google Scholar 

  9. 9.

    Xiong Z, Ramchandran K, Orchard MT: Space-frequency quantization for wavelet image coding. IEEE Transactions on Image Processing 1997, 6(5):677–693. 10.1109/83.568925

    Article  Google Scholar 

  10. 10.

    Girod B: Efficiency analysis of multihypothesis motion-compensated prediction for video coding. IEEE Transactions on Image Processing 2000, 9(2):173–183. 10.1109/83.821595

    Article  Google Scholar 

  11. 11.

    Wiegand T, Zhang X, Girod B: Long-term memory motion-compensated prediction. IEEE Transactions on Circuits and Systems for Video Technology 1999, 9(1):70–84. 10.1109/76.744276

    Article  Google Scholar 

  12. 12.

    Orchard MT, Sullivan GJ: Overlapped block motion compensation: an estimation-theoretic approach. IEEE Transactions on Image Processing 1994, 3(5):693–699. 10.1109/83.334974

    Article  Google Scholar 

  13. 13.

    Orchard MT: Predictive motion-field segmentation for image sequence coding. IEEE Transactions on Circuits and Systems for Video Technology 1993, 3(1):54–70. 10.1109/76.180690

    Article  Google Scholar 

  14. 14.

    Ozcelik T, Katsaggelos AK: A hybrid object-oriented very low bit rate video codec. Proceedings of 9th Image and Multidimensional Signal Processing (IMDSP '96), March 1996, Belize City, Belize

    Google Scholar 

  15. 15.

    Yang X, Ramchandran K: Low-complexity region-based video coder using backward morphological motion field segmentation. IEEE Transactions on Image Processing 1999, 8(3):332–345. 10.1109/83.748889

    Article  Google Scholar 

  16. 16.

    Wang JYA, Adelson EH: Layered representation for motion analysis. Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR '93), June 1993, New York, NY, USA 361–366.

    Google Scholar 

  17. 17.

    Girod B: Motion-compensating prediction with fractional-pel accuracy. IEEE Transactions on Communications 1993, 41(4):604–612. 10.1109/26.223785

    Article  Google Scholar 

  18. 18.

    Brunello D, Calvagno G, Mian GA, Rinaldo R: Lossless compression of video using temporal information. IEEE Transactions on Image Processing 2003, 12(2):132–139. 10.1109/TIP.2002.807354

    MathSciNet  Article  Google Scholar 

  19. 19.

    Jayant N, Noll P: Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice-Hall, Englewood Cliffs, NJ, USA; 1984.

    Google Scholar 

  20. 20.

    Li X: On exploiting geometric constraint of image wavelet coefficients. IEEE Transactions on Image Processing 2003, 12(11):1378–1387. 10.1109/TIP.2003.818011

    MathSciNet  Article  Google Scholar 

  21. 21.

    Li X, Orchard MT: Edge-directed prediction for lossless compression of natural images. IEEE Transactions on Image Processing 2001, 10(6):813–817. 10.1109/83.923277

    Article  Google Scholar 

  22. 22.

    Ngo C-W, Pong T-C, Zhang H-J, Chin RT: Motion characterization by temporal slices analysis. Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR '00), June 2000, Hilton Head, SC, USA 2: 768–773.

    Article  Google Scholar 

  23. 23.

    Ngo C-W, Pong T-C, Zhang H-J: Motion analysis and segmentation through spatio-temporal slices processing. IEEE Transactions on Image Processing 2003, 12(3):341–355. 10.1109/TIP.2003.809020

    Article  Google Scholar 

  24. 24.

    Tekalp A: Digital Video Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 1995.

    Google Scholar 

  25. 25.

    Horn BKP, Schunck BG: Determining optical flow. Artificial Intelligence 1981, 17: 185–203. 10.1016/0004-3702(81)90024-2

    Article  Google Scholar 

  26. 26.

    Konrad J, Dubois E: Bayesian estimation of motion vector fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 1992, 14(9):910–927. 10.1109/34.161350

    Article  Google Scholar 

  27. 27.

    Rosenfeld A, Kak A: Digital Picture Processing. Academic Press, New York, NY, USA; 1982.

    Google Scholar 

  28. 28.

    Brown LG: A survey of image registration techniques. ACM Computing Surveys 1992, 24(4):325–376. 10.1145/146370.146374

    Article  Google Scholar 

  29. 29.

    Taubman D, Zakhor A: Multirate 3-D subband coding of video. IEEE Transactions on Image Processing 1994, 3(5):572–588. 10.1109/83.334984

    Article  Google Scholar 

  30. 30.

    Kailath T, Sayed A, Hassibi B: Linear Estimation. Prentice-Hall, Englewood Cliffs, NJ, USA; 2000.

    Google Scholar 

  31. 31.

    Haykin S: Adaptve Filtering Theory. 4th edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.

    Google Scholar 

  32. 32.

    Wu X, Barthel KU, Zhang W: Piecewise 2D autoregression for predictive image coding. Proceedings of IEEE International Conference on Image Processing (ICIP '98), October 1998, Chicago, Ill, USA 3: 901–904.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, X. Least-Square Prediction for Backward Adaptive Video Coding. EURASIP J. Adv. Signal Process. 2006, 090542 (2006). https://doi.org/10.1155/ASP/2006/90542

Download citation

Keywords

  • Motion Estimation
  • Test Sequence
  • Video Code
  • Motion Trajectory
  • Fast Motion