Skip to main content

A Comparison of Set Redundancy Compression Techniques


Medical imaging applications produce large sets of similar images. Thus a compression technique is necessary to reduce space storage. Lossless compression methods are necessary in such critical applications. Set redundancy compression (SRC) methods exploit the interimage redundancy and achieve better results than individual image compression techniques when applied to sets of similar images. In this paper, we make a comparative study of SRC methods on sample datasets using various archivers. We also propose a new SRC method and compare it to existing SRC techniques.


  1. 1.

    Bekkouche H, Barret M: Adaptive multiresolution decomposition: application to lossless image compression. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA

    Google Scholar 

  2. 2.

    Celik MU, Sharma G, Tekalp AM: Gray-level embedded lossless image compression. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), April 2003, Hong Kong III-245–III-248.

    Google Scholar 

  3. 3.

    Chang CC, Chen GI: Enhancement algorithm for nonlinear context-based predictors. IEE Proceedings - Vision, Image, and Signal Processing 2003, 150(1):15–19. 10.1049/ip-vis:20030163

    Article  Google Scholar 

  4. 4.

    Clunie DA: Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches. Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues, February 2000, San Diego, Calif, USA, Proceedings of SPIE 3980: 74–84.

    Google Scholar 

  5. 5.

    Jiang J, Guo B, Yang SY: Revisiting the JPEG-LS prediction scheme. IEE Proceedings: Vision, Image and Signal Processing 2000, 147(6):575–580. 10.1049/ip-vis:20000767

    Google Scholar 

  6. 6.

    Karadimitriou K: Set redundancy, the enhanced compression model, and methods for compressing sets of similar images, M.S. thesis. Department of Computer Science, Louisiana State University, Baton Rouge, La, USA; August 1996.

    Google Scholar 

  7. 7.

    Huffman DA: A method for the construction of minimum redundancy codes. Proceedings of IRE 1952, 40(9):1098–1101.

    Article  Google Scholar 

  8. 8.

    Shkarin D: Improving the efficiency of PPM algorithm. Problems of Information Transmission 2001, 37(3):226–235(10). 10.1023/A:1013878007506

    MathSciNet  Article  Google Scholar 

  9. 9.

    Ziv J, Lempel A: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 1977, 23(3):337–343. 10.1109/TIT.1977.1055714

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ziv J, Lempel A: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 1978, 24(5):530–536. 10.1109/TIT.1978.1055934

    MathSciNet  Article  Google Scholar 

  11. 11.

    Neter J, Wasserman W, Kutner MH: Applied Linear Regression Models. IRWIN, Burr Ridge, Ill, USA; 1989.

    Google Scholar 

  12. 12.

    Karadimitriou K, Tyler JM: The min-max differential method for large-scale storage and compression of medical images. Proceedings of of Annual Molecular Biology and Biotechnology Conference, 1996, Baton Rouge, La, USA

    Google Scholar 

  13. 13.

    Karadimitriou K, Tyler JM: Min-max compression methods for medical image databases. ACM SIGMOD Record 1997, 26(1):47–52. 10.1145/248603.248613

    Article  Google Scholar 

  14. 14.

    Karadimitriou K, Tyler JM: The Centroid method for compressing sets of similar images. Pattern Recognition Letters 1998, 19(7):585–593. 10.1016/S0167-8655(98)00033-6

    Article  Google Scholar 

  15. 15.

    El-Sonbaty Y, Hamza M, Basily G: Compressing sets of similar medical images using multilevel centroid technique. In Processing of the 7th Conference on Digital Image Computing, Techniques and Applications, December 2003, Sydney, Australia Edited by: Sun C, Talbot H, Ourselin S, Adriaansen T.

    Google Scholar 

  16. 16.

    Lee JD, Wan SY, Wu RF: A hybrid compression model for clusters of similar medical images. Biomedical Engineering - Aplications, Basis & Communications 2003., 16(1):

  17. 17.

    Weinberger MJ, Seroussi G, Sapiro G: LOCO-I: a low complexity, context-based, lossless image compression algorithm. Proceedings of the IEEE Data Compression Conference, April 1996, Snowbird, Utah, USA ISO Working Document ISO/IEC JTC1/SC29/WG1 N203

    Google Scholar 

  18. 18.

    Weinberger MJ, Seroussi G, Sapiro G: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Transactions on Image Processing 2000, 9(8):1309–1324. 10.1109/83.855427

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Samy Ait-Aoudia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ait-Aoudia, S., Gabis, A. A Comparison of Set Redundancy Compression Techniques. EURASIP J. Adv. Signal Process. 2006, 092734 (2006).

Download citation


  • Information Technology
  • Medical Imaging
  • Quantum Information
  • Space Storage
  • Image Compression