Skip to main content
  • Research Article
  • Open access
  • Published:

Efficient Sequence Detection of Multicarrier Transmissions over Doubly Dispersive Channels

Abstract

We propose a high-spectral-efficiency multicarrier system for communication over the doubly dispersive (DD) channel which yields very low frame error rate (FER), with quadratic (in the frame length) receiver complexity. To accomplish this, we combine a non-(bi)orthogonal multicarrier modulation (MCM) scheme recently proposed by the authors with novel sequence detection (SD) and channel estimation (CE) algorithms. In particular, our MCM scheme allows us to accurately represent the DD channels otherwise complicated intercarrier interference (ICI) and intersymbol interference (ISI) response with a relatively small number of coefficients. The SD and CE algorithms then leverage this sparse ICI/ISI structure for low-complexity operation. Our SD algorithm combines a novel adaptive breadth-first search procedure with a new fast MMSE-GDFE preprocessor, while our CE algorithm uses a rank-reduced pilot-aided Wiener technique to estimate only the significant ICI/ISI coefficients.

References

  1. Ma X, Giannakis GB: Maximum-diversity transmissions over doubly selective wireless channels. IEEE Transactions on Information Theory 2003, 49(7):1832–1840. 10.1109/TIT.2003.813485

    Article  MathSciNet  Google Scholar 

  2. Tang Z, Leus G: A receiver architecture for maximum diversity transmissions over doubly-selective channels. Proceedings of IEEE 6th Workshop on Signal Processing Advances in Wireless Communications (SPAWC '05), June 2005, New York, NY, USA 171–175.

    Google Scholar 

  3. Bingham JAC: Multicarrier modulation for data transmission: an idea whose time has come. IEEE Communications Magazine 1990, 28(5):5–14. 10.1109/35.54342

    Article  Google Scholar 

  4. Cimini LJ Jr.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications 1985, 33(7):665–675. 10.1109/TCOM.1985.1096357

    Article  Google Scholar 

  5. Muquet B, Wang Z, Giannakis GB, De Courville M, Duhamel P: Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications 2002, 50(12):2136–2148. 10.1109/TCOMM.2002.806518

    Article  Google Scholar 

  6. Strohmer T, Beaver S: Optimal OFDM design for time-frequency dispersive channels. IEEE Transactions on Communications 2003, 51(7):1111–1122. 10.1109/TCOMM.2003.814200

    Article  Google Scholar 

  7. Jeon WG, Chang KH, Cho YS: An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels. IEEE Transactions on Communications 1999, 47(1):27–32. 10.1109/26.747810

    Article  Google Scholar 

  8. Stamoulis A, Diggavi SN, Al-Dhahir N: Intercarrier interference in MIMO OFDM. IEEE Transactions on Signal Processing 2002, 50(10):2451–2464. 10.1109/TSP.2002.803347

    Article  Google Scholar 

  9. Barhumi I, Leus G, Moonen M: Time-domain and frequency-domain per-tone equalization for OFDM over doubly selective channels. Signal Processing 2004, 84(11):2055–2066. 10.1016/j.sigpro.2004.07.016

    Article  Google Scholar 

  10. Choi Y-S, Voltz PJ, Cassara FA: On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications 2001, 49(8):1375–1387. 10.1109/26.939860

    Article  Google Scholar 

  11. Rugini L, Banelli P, Leus G: Block DFE and windowing for Doppler-affected OFDM systems. Proceedings of IEEE 6th Workshop on Signal Processing Advances in Wireless Communications (SPAWC '05), June 2005, New York, NY, USA 470–474.

    Google Scholar 

  12. Cai X, Giannakis GB: Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. IEEE Transactions on Communications 2003, 51(12):2047–2056. 10.1109/TCOMM.2003.820752

    Article  Google Scholar 

  13. Schniter P: Low-complexity equalization of OFDM in doubly selective channels. IEEE Transactions on Signal Processing 2004, 52(4):1002–1011. 10.1109/TSP.2004.823503

    Article  MathSciNet  Google Scholar 

  14. Das S, Schniter P: A new pulse shaped frequency division multiplexing technique for doubly dispersive channels. Proceedings of Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, November 2004, Pacific Grove, Calif, USA 1: 657–661.

    Google Scholar 

  15. Das S, Schniter P: Max-SINR ISI/ICI-shaping multi-carrier modulation for the doubly dispersive channel. submitted to IEEE Transactions on Signal Processing

  16. Matheus K, Kammeyer K-D: Optimal design of a multicarrier systems with soft impulse shaping including equalization in time or frequency direction. Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '97), November 1997, Phoenix, Ariz, USA 1: 310–314.

    Article  Google Scholar 

  17. Matheus K, Knoche K, Feuersänger M, Kammeyer K-D: Two-dimensional (recursive) channel equalization for multicarrier systems with soft impulse shaping (MCSIS). Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '98), November 1998, Sydney, NSW, Australia 2: 956–961.

    Google Scholar 

  18. Sigloch K, Andrews MR, Mitra PP, Thomson DJ: Communicating over nonstationary nonflat wireless channels. IEEE Transactions on Signal Processing 2005, 53(6):2216–2227.

    Article  MathSciNet  Google Scholar 

  19. Ohno S: Maximum likelihood inter-carrier interference suppression for wireless OFDM with null subcarriers. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, March 2005, Philadelphia, Pa, USA 3: 849–852.

    Google Scholar 

  20. Viterbi AJ, Omura J: Principles of Digital Communication and Decoding. McGraw-Hill, New York, NY, USA; 1979.

    MATH  Google Scholar 

  21. Anderson JB, Mohan S: Sequential coding algorithms: a survey and cost analysis. IEEE Transactions on Communications 1984, 32(2):169–176. 10.1109/TCOM.1984.1096023

    Article  Google Scholar 

  22. Murugan A, El Gamal H, Damen MO, Caire G: A unified framework for tree search decoding: rediscovering the sequential decoder. IEEE Transactions on Information Theory 2006, 52(3):933–953.

    Article  MathSciNet  Google Scholar 

  23. Damen MO, El Gamal H, Caire G: MMSE-GDFE lattice decoding for under-determined linear channels. Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS '04), March 2004, Princeton, NJ, USA

    Google Scholar 

  24. Simmons SJ: Breadth-first trellis decoding with adaptive effort. IEEE Transactions on Communications 1990, 38(1):3–12. 10.1109/26.46522

    Article  MathSciNet  Google Scholar 

  25. Bölcskei H: Orthogonal frequency division multiplexing based on offset QAM. In Advances in Gabor Theory. Edited by: Feichtinger HG, Strohmer T. Birkhäuser, Boston, Mass, USA; 2002:321–352.

    Google Scholar 

  26. Chang RW: Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Technical Journal 1966, 45: 1775–1796.

    Article  Google Scholar 

  27. Le Floch B, Alard M, Berrou C: Coded orthogonal frequency division multiplex. Proceedings of the IEEE 1995, 83(6):982–996. 10.1109/5.387096

    Article  Google Scholar 

  28. Haas R, Belfiore J-C: A time-frequency well-localized pulse for multiple carrier transmission. Wireless Personal Communications 1997, 5(1):1–18. 10.1023/A:1008859809455

    Article  Google Scholar 

  29. Kozek W, Molisch AF: Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels. IEEE Journal on Selected Areas in Communications 1998, 16(8):1579–1589. 10.1109/49.730463

    Article  Google Scholar 

  30. Bölcskei H, Duhamel P, Hleiss R: Design of pulse-shaping OFDM/OQAM systems for high data-rate transmission over wireless channels. Proceedings of IEEE International Conference on Communications (ICC '99), June 1999, Vancouver, British Columbia, Canada 1: 559–564.

    Google Scholar 

  31. Schniter P: A new approach to multicarrier pulse design for doubly-dispersive channels. Proceedings of Annual Allerton Conference on Communication, Control, and Computing, October 2003, Monticello, Ill, USA 1012–1021.

    Google Scholar 

  32. Forney GD Jr.: The Viterbi algorithm. Proceedings of the IEEE 1973, 61(3):268–278.

    Article  MathSciNet  Google Scholar 

  33. Mow WH: Maximum likelihood sequence estimation from the lattice viewpoint. IEEE Transactions on Information Theory 1994, 40(5):1591–1600. 10.1109/18.333872

    Article  Google Scholar 

  34. Viterbo E, Boutros J: A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory 1999, 45(5):1639–1642. 10.1109/18.771234

    Article  MathSciNet  Google Scholar 

  35. Agrell E, Eriksson T, Vardy A, Zeger K: Closest point search in lattices. IEEE Transactions on Information Theory 2002, 48(8):2201–2214. 10.1109/TIT.2002.800499

    Article  MathSciNet  Google Scholar 

  36. Damen MO, El Gamal H, Caire G: On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory 2003, 49(10):2389–2402. 10.1109/TIT.2003.817444

    Article  MathSciNet  Google Scholar 

  37. Al-Dhahir N, Sayed AH: The finite-length multi-input multi-output MMSE-DFE. IEEE Transactions on Signal Processing 2000, 48(10):2921–2936. 10.1109/78.869048

    Article  Google Scholar 

  38. Hwang S-J, Schniter P: On the optimality of MMSE-GDFE pre-processed sphere decoding. Proceedings of Annual Allerton Conference on Communication, Control, and Computing, October 2005, Monticello, Ill, USA

    Google Scholar 

  39. El Gamal H, Caire G, Damen MO: Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels. IEEE Transactions on Information Theory 2004, 50(6):968–985. 10.1109/TIT.2004.828067

    Article  MathSciNet  Google Scholar 

  40. Gowaikar R, Hassibi B: Efficient statistical pruning for maximum likelihood decoding. Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '03), 2003, Hong Kong 5: 49–52.

    MATH  Google Scholar 

  41. Wozencraft JM, Reiffen B: Sequential Decoding. MIT Press, Cambridge, Mass, USA; John Wiley & Sons, New York, NY, USA; 1961.

    MATH  Google Scholar 

  42. Fincke U, Pohst M: Improved methods for calculating vectors of short length in a lattice. Mathematics of Computation 1985, 44(170):463–471. 10.1090/S0025-5718-1985-0777278-8

    Article  MathSciNet  Google Scholar 

  43. Fano RM: A heuristic discussion of probabilistic decoding. IEEE Transactions on Information Theory 1963, 9(2):64–74. 10.1109/TIT.1963.1057827

    Article  MathSciNet  Google Scholar 

  44. Zamiri-Jafarian H, Pasupathy S:Adaptive-algorithm in mlsd/mlsde receivers for fading channels. Proceedings of IEEE International Conference on Communications (ICC '99), June 1999, Vancouver, British Columbia, Canada 1: 539–543.

    Google Scholar 

  45. Kokkonen M, Kalliojarvi K: Soft-decision decoding of binary linear block codes using reduced breadth-first search algorithms. IEEE Transactions on Communications 2000, 48(6):905–907. 10.1109/26.848545

    Article  Google Scholar 

  46. Golub GH, Van Loan CF: Matrix Computations. 3rd edition. John Hopkins University Press, Baltimore, Md, USA; 1996.

    MATH  Google Scholar 

  47. Zemen T, Mecklenbräuker CF: Time-variant channel estimation using discrete prolate spheriodal sequences. IEEE Transactions on Signal Processing 2005, 53: 3597–3607.

    Article  MathSciNet  Google Scholar 

  48. Scharf LL: Statistical Signal Processing. Addison-Wesley, Reading, Mass, USA; 1991.

    MATH  Google Scholar 

  49. Schniter P: On doubly dispersive channel estimation for pilot-aided pulse-shaped multi-carrier modulation. Proceedings of Conference on Information Sciences and Systems (CISS '06), March 2006, Princeton, NJ, USA

    Google Scholar 

  50. Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jun Hwang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Hwang, SJ., Schniter, P. Efficient Sequence Detection of Multicarrier Transmissions over Doubly Dispersive Channels. EURASIP J. Adv. Signal Process. 2006, 093638 (2006). https://doi.org/10.1155/ASP/2006/93638

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/ASP/2006/93638

Keywords