Skip to main content
  • Research Article
  • Published:

Automated Quality Assurance Applied to Mammographic Imaging


Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM) test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lilian Blot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blot, L., Davis, A., Holubinka, M. et al. Automated Quality Assurance Applied to Mammographic Imaging. EURASIP J. Adv. Signal Process. 2002, 647019 (2002).

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: