Skip to main content

Optimization of Color Conversion for Face Recognition


This paper concerns the conversion of color images to monochromatic form for the purpose of human face recognition. Many face recognition systems operate using monochromatic information alone even when color images are available. In such cases, simple color transformations are commonly used that are not optimal for the face recognition task. We present a framework for selecting the transformation from face imagery using one of three methods: Karhunen-Loève analysis, linear regression of color distribution, and a genetic algorithm. Experimental results are presented for both the well-known eigenface method and for extraction of Gabor-based face features to demonstrate the potential for improved overall system performance. Using a database of 280 images, our experiments using these methods resulted in performance improvements of approximately 4% to 14%.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Creed F. Jones III.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, C.F., Abbott, A.L. Optimization of Color Conversion for Face Recognition. EURASIP J. Adv. Signal Process. 2004, 948790 (2004).

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI:

Keywords and phrases

  • face recognition
  • color image analysis
  • color conversion
  • Karhunen-Loève analysis