Skip to main content

Correction of Misclassifications Using a Proximity-Based Estimation Method

Abstract

An estimation method for correcting misclassifications in signal and image processing is presented. The method is based on the use of context-based (temporal or spatial) information in a sliding-window fashion. The classes can be purely nominal, that is, an ordering of the classes is not required. The method employs nonlinear operations based on class proximities defined by a proximity matrix. Two case studies are presented. In the first, the proposed method is applied to one-dimensional signals for processing data that are obtained by a musical key-finding algorithm. In the second, the estimation method is applied to two-dimensional signals for correction of misclassifications in images. In the first case study, the proximity matrix employed by the estimation method follows directly from music perception studies, whereas in the second case study, the optimal proximity matrix is obtained with genetic algorithms as the learning rule in a training-based optimization framework. Simulation results are presented in both case studies and the degree of improvement in classification accuracy that is obtained by the proposed method is assessed statistically using Kappa analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antti Niemistö.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niemistö, A., Shmulevich, I., Lukin, V.V. et al. Correction of Misclassifications Using a Proximity-Based Estimation Method. EURASIP J. Adv. Signal Process. 2004, 508513 (2004). https://doi.org/10.1155/S1110865704402145

Download citation

Keywords and phrases

  • misclassification correction
  • image recognition
  • training-based optimization
  • genetic algorithms
  • musical key finding
  • remote sensing