Open Access

Surface Approximation Using the 2D FFENN Architecture

EURASIP Journal on Advances in Signal Processing20042004:348702

Received: 27 August 2003

Published: 27 December 2004


A new two-dimensional feed-forward functionally expanded neural network (2D FFENN) used to produce surface models in two dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network's functional expansion. A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP), and radial basis function (RBF) architectures are presented.


neural networks sea clutter surface modeling

Authors’ Affiliations

Institute for Communications & Signal Processing, University of Strathclyde


© Panagopoulos and Soraghan 2004