- Research Article
- Open Access
- Published:
Pitch Correlogram Clustering for Fast Speaker Identification
EURASIP Journal on Advances in Signal Processing volume 2004, Article number: 372807 (2004)
Abstract
Gaussian mixture models (GMMs) are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jhanwar, N., Raina, A.K. Pitch Correlogram Clustering for Fast Speaker Identification. EURASIP J. Adv. Signal Process. 2004, 372807 (2004). https://doi.org/10.1155/S1110865704408026
Received:
Revised:
Published:
DOI: https://doi.org/10.1155/S1110865704408026
Keywords and phrases
- speaker identification
- clustering
- pitch
- correlogram