Skip to main content

Table 2 Equivalent constrained PARAFAC models

From: Overview of constrained PARAFAC models

Models

Equivalent constrained PARAFAC model

Matrix unfoldings

PARAFAC‐3

 

X I 1 × I 2 I 3 = A ( 1 ) ( A ( 2 ) A ( 3 ) ) T

Tucker‐3

 

X I 1 × I 2 I 3 = A ( 1 ) G R 1 × R 2 R 3 ( A ( 2 ) A ( 3 ) ) T

Tucker‐(2,3)

X= I 3 , R × 1 A ( 1 ) Ψ ( 1 ) × 2 A ( 2 ) Ψ ( 2 ) × 3 G I 3 × R 1 R 2

X I 1 × I 2 I 3 = A ( 1 ) Ψ ( 1 ) ( A ( 2 ) Ψ ( 2 ) G I 3 × R 1 R 2 ) T

 

Ψ ( 1 ) = I R 1 1 R 2 T , Ψ ( 2 ) = 1 R 1 T I R 2

 

PARALIND/CONFAC‐3

X= I 3 , R × 1 A ( 1 ) Φ ( 1 ) × 2 A ( 2 ) Φ ( 2 ) × 3 A ( 3 ) Φ ( 3 )

X I 1 × I 2 I 3 = A ( 1 ) Φ ( 1 ) ( A ( 2 ) Φ ( 2 ) A ( 3 ) Φ ( 3 ) ) T

  

= A(1)Φ(1)(Φ(2)Φ(3))T(A(2)A(3))T

PARATUCK‐2

X= I 3 , R × 1 A ( 1 ) Ψ ( 1 ) × 2 A ( 2 ) Ψ ( 2 ) × 3 F

 
 

Ψ ( 1 ) = I R 1 1 R 2 T , Ψ ( 2 ) = 1 R 1 T I R 2

X I 1 × I 2 I 3 = A ( 1 ) Ψ ( 1 ) ( A ( 2 ) Ψ ( 2 ) F ) T

 

F=(Φ(1)Φ(2))Tdiag(vec(CT))

 

PARATUCK‐(2,4)

X= I 4 , R × 1 A ( 1 ) Ψ ( 1 ) × 2 A ( 2 ) Ψ ( 2 ) × 3 F × 4 D

X I 1 × I 2 I 3 I 4 = A ( 1 ) Ψ ( 1 ) ( A ( 2 ) Ψ ( 2 ) F C I 4 × R 1 R 2 ) T

 

Ψ ( 1 ) = I R 1 1 R 2 T , Ψ ( 2 ) = 1 R 1 T I R 2

X I 1 I 2 × I 3 I 4 =( A ( 1 ) A ( 2 ) )

 

F= ( Φ ( 1 ) Φ ( 2 ) ) T ,D= C I 4 × R 1 R 2

( Φ ( 1 ) Φ ( 2 ) ) T C I 4 × R 1 R 2 T