Skip to main content

Table 8 WER [%] on the REVERB challenge dev set, with system combination using both MFCC and PLP features

From: Effectiveness of dereverberation, feature transformation, discriminative training methods, and system combination approach for various reverberant environments

      

SIMDATA

REALDATA

  

Number of systems

Room 1

Room 2

Room 3

Avg

Room 1

Avg

 

ID

GMM

SAT-GMM

SGMM

DNN

Near

Far

Near

Far

Near

Far

 

Near

Far

 

1 ch

1)

 

2

  

6.00

8.19

7.52

14.37

8.78

18.35

10.54

27.70

30.35

29.03

 

2)

2

2

  

5.31

6.37

6.58

12.62

7.42

16.00

9.05

27.26

29.60

28.43

 

3)

4

4

  

5.33

6.39

6.63

12.67

7.49

15.60

9.02

27.01

29.67

28.34

 

4)

4

4

4

 

5.01

6.34

6.33

12.45

6.87

15.43

8.74

26.64

29.80

28.22

 

5)

4

4

4

4

4.67

5.88

6.31

11.93

6.63

14.89

8.39

26.58

28.91

27.75

 

6)

2

2

2

2

4.52

5.68

6.29

12.00

6.50

15.06

8.34

26.45

29.80

28.13

8 ch

1)

 

2

  

4.72

5.83

5.96

8.92

5.37

8.75

6.59

23.27

28.30

25.79

 

2)

2

2

  

4.72

6.02

5.72

8.26

5.14

8.56

6.40

22.27

26.59

24.43

 

3)

4

4

  

4.72

5.83

5.77

8.21

5.19

8.38

6.35

22.52

26.52

24.52

 

4)

4

4

4

 

4.08

5.16

5.62

7.79

4.80

8.38

5.97

22.40

27.00

24.70

 

5)

4

4

4

4

4.18

5.11

5.50

7.74

4.85

8.23

5.94

21.90

26.52

24.21

 

6)

3

1

4

2

4.18

5.51

5.50

7.74

4.97

8.43

6.06

21.58

26.32

23.95

  1. For GMM systems, f-bMMI is used, while for SGMM and DNN systems, bMMI is used. The number 2 stands for MFCC and PLP systems, and the number 4 stands for MFCC and PLP systems along with their complementary systems. ROVER 6) uses black-box optimization at the stage of system selection and parameter optimization for ROVER. Italicized data were the best systems in each condition