Skip to main content

Table 1 The SC-RPAPA algorithm with MRAP

From: A low complexity reweighted proportionate affine projection algorithm with memory and row action projection

Initialization

\(\hat {\mathbf {h}}(0)=\mathbf {0}_{L \times 1},\rho =0.01,q=0.01,\delta =0.01/L\)

 

σ max=0.02, ε min=1e −4, μ=0.2

Sparseness

 

control

\(\hat {\epsilon }(n)=\frac {L}{L-\sqrt {L}}\left (1-\frac {\Vert \hat {\mathbf {h}}(n-1)\Vert _{1}}{\sqrt {L}\Vert \hat {\mathbf {h}}(n-1)\Vert _{2}}\right)\)

 

\(\mathrm {F}(|\hat {h}_{l}|)=\frac {|\hat {h}_{l}|}{|\hat {h}_{l}|+{\text {max}}\{\hat {\epsilon }(n)-0.4,\epsilon _{\text {min}} \}\sigma _{\text {max}}}\)

 

\(r_{l}=\text {max}\{\rho \text {max}\{q,\mathrm {F}(|\hat {h}_{0}|),\ldots,\mathrm {F}(|\hat {h}_{L-1}|)\}, \mathrm {F}(|\hat {h}_{l}|)\} \)

 

\(g_{l}(n-1)=\frac {r_{l}(n-1)}{\frac {1}{L}\sum _{i=0}^{L}r_{l}(n-1)}\)

 

g(n−1)=[g 0(n−1),g 1(n−1),…,g L−1(n−1)]T

Memory

 

update

\(\mathbf {P}^{\prime }(n)=[\mathbf {g}(n-1)\odot \mathbf {x}(n),\mathbf {P}^{\prime }_{-1}(n-1)]\)

 

\(\mathbf {p}(n)=[\mathbf {x}^{T}(n)\mathbf {P}^{\prime }_{0}(n),\mathbf {p}_{-1}(n-1)]\)

Error output

\(e(n)=d(n)-\mathbf {x}^{T}(n-m)\hat {\mathbf {h}}(n-1)\)

RAP

 

iteration

\(\hat {\mathbf {h}}^{[0]}=\hat {\mathbf {h}}(n-1)\)

 

for m=0,1,…,M−1

 

α(m)=μ/(p m (n)+δ)

 

\(\hspace {26pt} e^{[m]}=d(n-m)-\mathbf {x}^{T}(n-m)\hat {\mathbf {h}}^{[m]}\)

 

\(\hspace {26pt} \hat {\mathbf {h}}^{[m+1]}=\hat {\mathbf {h}}^{[m]}+\alpha (m)\mathbf {P}^{\prime }_{m}(n)e^{[m]}\)

 

m=m+1

Filter update

\(\hat {\mathbf {h}}(n)=\hat {\mathbf {h}}^{[M]}\)