# Table 4 Computational effort for the identification of a ESA-HM with a PB-FNLMS algorithm

Computed quantity Equation Multiplicity Required operations
Preprocessed input (30) $$p=0,\dots,\frac {N}{2}-1$$ 0 0 0 (B−1)N/2 (B−1)N/2 0
HM submodel (forward) Table 2,B=1   2P+3 2P N N N N(2P−1) 6N N $$\frac {N}{2}+3N_{\mathrm {N}}$$ N N
Inversion submodel Table 2,B=1   2P+3 2P N N N N(2P−1) 6N N $$\frac {N}{2}+3N_{\mathrm {N}}$$ N N
Time-domain HGM Table 1,L=L SA $$\frac {N}{2}$$ 0 0 0 $$2B(L_{\text {SA}}+1)\frac {N}{2}$$ $$2B(L_{\text {SA}}+1)\frac {N}{2}+\frac {N}{2}$$ $$B\frac {N}{2}$$
Accumulated: 4P+6 4P N N N N(4P−1) \begin {aligned} 2B+12N_{\mathrm {N}}+\\\frac {N(B-1)}{2}+BL_{\text {SA}}+\\ BN(L_{\text {SA}}+1)-2 \end {aligned} \begin {aligned} N+6N_{\mathrm {N}}+\\BL_{\text {SA}}+\frac {3BN}{2}+\\BL_{\text {SA}} N-1 \end {aligned} \begin {aligned} B+\\2N_{\mathrm {N}}+\\\frac {BN}{2}-1 \end {aligned}
Total: $$\left (8P+12\right)N\log _{2}N+16P+\frac {N}{2}+\left (2L_{\text {SA}}+\frac {7N}{2}+2L_{\text {SA}} N+3\right)B+10PN-10$$ FLOPs