# Table 1 LTVFF-DRLS and LCTVFF-DRLS algorithms

LTVFF-DRLS Algorithm   LCTVFF-DRLS Algorithm
1 For each node k=1,2,…,N do 1 For each node k=1,2,…,N do
2 Initialize w k,−1=0, P k,−1=Π −1. 2 Initialize w k,−1=0, P k,−1=Π −1.
3 For time instant i=1,2,… do 3 For time instant i=1,2,… do
4 $$\lambda _{k}(i)=[1-\zeta _{k}(i)]_{\lambda _{-}}^{\lambda _{+}}$$. 4 $$\lambda _{k}(i)=[1-\zeta _{k}(i)]_{\lambda _{-}}^{\lambda _{+}}$$.
5 ζ k (i)=α ζ k (i−1)+β|e k (i)|2. 5 ζ k (i)=α ζ k (i−1)+β|ρ k (i)|2.
6 ρ k (i)=γ ρ k (i−1)+(1−γ)|e k (i−1)||e k (i)|.
6 Set ψ k,i =w k,i−1, $$\mathbf {P}_{k,i}=\lambda ^{-1}_{k}(i)\mathbf {P}_{k,i-1}$$. 7 Set ψ k,i =w k,i−1, $$\mathbf {P}_{k,i}=\lambda ^{-1}_{k}(i)\mathbf {P}_{k,i-1}$$.
7 For $$l\in \mathcal {N}_{k}$$ do 8 For $$l\in \mathcal {N}_{k}$$ do
8 $$\boldsymbol {\psi }_{k,i}{\longleftarrow }\boldsymbol {\psi }_{k,i}+ \frac {C_{l,k}\mathbf {P}_{k,i}\mathbf {u}_{l,i}[d_{l,i}-\mathbf {u}_{l,i}^{*}\boldsymbol {\psi }_{k,i}]} {\sigma _{v,l}^{2}+C_{l,k}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}\mathbf {u}_{l,i}}$$. 9 $$\boldsymbol {\psi }_{k,i}{\longleftarrow }\boldsymbol {\psi }_{k,i}+ \frac {C_{l,k}\mathbf {P}_{k,i}\mathbf {u}_{l,i}[d_{l,i}-\mathbf {u}_{l,i}^{*}\boldsymbol {\psi }_{k,i}]} {\sigma _{v,l}^{2}+C_{l,k}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}\mathbf {u}_{l,i}}$$.
9 $$\mathbf {P}_{k,i}{\longleftarrow }\mathbf {P}_{k,i}- \frac {C_{l,k}\mathbf {P}_{k,i}\mathbf {u}_{l,i}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}}{\sigma _{v,l}^{2}+C_{l,k}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}\mathbf {u}_{l,i}}$$. 10 $$\mathbf {P}_{k,i}{\longleftarrow }\mathbf {P}_{k,i}- \frac {C_{l,k}\mathbf {P}_{k,i}\mathbf {u}_{l,i}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}}{\sigma _{v,l}^{2}+C_{l,k}\mathbf {u}_{l,i}^{*}\mathbf {P}_{k,i}\mathbf {u}_{l,i}}$$.
10 End 11 End
11 Generate the final estimate $$\mathbf {w}_{k,i}=\sum \limits _{l\in \mathcal {N}_{k}}A_{l,k}\boldsymbol {\psi }_{l,i}$$. 12 Generate the final estimate $$\mathbf {w}_{k,i}=\sum \limits _{l\in \mathcal {N}_{k}}A_{l,k}\boldsymbol {\psi }_{l,i}$$.
12 End 13 End
13 End 14 End