Skip to main content

Table 3 Definition of elements in (48) required for additional derivatives in (34) when computing the FIM

From: Cramer-Rao bounds in the estimation of time of arrival in fading channels

p Ψ p D E F
1 k 0 b ϕ α t \(A_{0}\partial \mathbf {g}^{(k_{0})}/\partial k_{0}\)
2 α n
3 β b ϕ α t \(A_{0}\partial \mathbf {g}^{(k_{0})}/\partial \beta \)
4 P s
5 \(\sigma _{w}^{2}\)
6 α b ϕ α t / α \({A_{0}\mathbf {g}^{k_{0}}}\)
7: Np−1 ρ p−6 b ϕ / ρ p−6 α t \({A_{0}\mathbf {g}^{k_{0}}}\)
N p A 0 b ϕ α t \(\phantom {\dot {i}\!}{\mathbf {g}^{k_{0}}}\)
  1. Modeling of a LOS Rice fading channel