TY - STD TI - J Mitola, GQ Maguire, Cognitive radio: making software radios more personal. IEEE Personal Commun.6(4), 13–18 (1999). https://doi.org/10.1109/98.788210. ID - ref1 ER - TY - STD TI - S Haykin, Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005). https://doi.org/10.1109/JSAC.2004.839380. ID - ref2 ER - TY - STD TI - FK Jondral, Cognitive radio: a communications engineering view. IEEE Wirel.Commun. 14(4), 28–33 (2007). https://doi.org/10.1109/MWC.2007.4300980. ID - ref3 ER - TY - STD TI - G Scutari, DP Palomar, S Barbaross, Cognitive MIMO radio. IEEE Signal Process. Mag. 25(6) (2008). https://doi.org/10.1109/MSP.2008.929297. ID - ref4 ER - TY - STD TI - B Wang, RJ Ray Liu, Advances in cognitive radio networks: a survey. IEEE J. Sel. Topics Signal Process. 5(1), 5–23 (2011). https://doi.org/10.1109/JSTSP.2010.2093210. ID - ref5 ER - TY - STD TI - E Axell, G Leus, EG Larsson, HV Poor, Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (May 2012). https://doi.org/10.1109/MSP.2012.2183771. ID - ref6 ER - TY - STD TI - M Rais-Zadeh, JT Fox, DD Wentzloff, YB Gianchandani, Reconfigurable radios: possible solution to reduce entry costs in wireless phones. Proc. IEEE. 103(3), 438–451 (2015). https://doi.org/10.1109/JPROC.2015.2396903. ID - ref7 ER - TY - STD TI - T Weingard, DC Sicker, D Grunwald, A statistical method for reconfiguration of cognitive radios. IEEE Wirel.Commun.14(4), 34–40 (Aug. 2007). https://doi.org/10.1109/MWC.2007.4300981. ID - ref8 ER - TY - BOOK AU - Milliger, M. PY - 2003 DA - 2003// TI - Software defined radio: architectures, systems and functions PB - Wiley CY - New York ID - Milliger2003 ER - TY - STD TI - RG Machado, AM Wyglinski, Software-defined radio: bridging the analog-digital divide. Proc. IEEE. 103(3), 409–423 (2015). https://doi.org/10.1109/JPROC.2015.2399173. ID - ref10 ER - TY - STD TI - D Kreutz, FMV Ramos, PE Verissimo, CE Rothenberg, S Azodolmolky, S Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE. 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999. ID - ref11 ER - TY - STD TI - O Anjum, T Ahonen, F Garzia, J Nurmi, C Brunelli, H Berg, State of the art baseband DSP platforms for software defined radio: a survey. EURASIP J. Wirel. Commun. Netw. 2011:, 5 (2011). https://doi.org/10.1186/1687-1499-2011-5. ID - ref12 ER - TY - STD TI - K He, L Crockett, R Stewart, Dynamic reconfiguration technologies based on FPGA in software defined radio system. J. Sign. Process. Syst. 69(1), 75–85 (2012). https://doi.org/10.1007/s11265-011-0646-2. ID - ref13 ER - TY - STD TI - J Im, M Cho, Y Jung, Y Jung, J Kim, A low-power and low-complexity baseband processor for MIMO-OFDM WLAN systems. J. Sign. Process. Syst. 68(1), 19–30 (2012). https://doi.org/10.1007/s11265-010-0570-x. ID - ref14 ER - TY - STD TI - AP Vinod, EM-K Lai, A Omondi, Special issue on signal processing for software defined radio handsets. J. Sign. Process. Syst. 62(2), 113–115 (2011). https://doi.org/10.1007/s11265-009-0428-2. ID - ref15 ER - TY - STD TI - H Celebi, H Arslan, Enabling location and environment awareness in cognitive radios. Computer Commun. 31:, 1114–1125 (2008). https://doi.org/10.1016/j.comcom.2008.01.006. ID - ref16 ER - TY - STD TI - PJ Werbos, Intelligence in the brain: a theory of how it works and how to build it. Neural Networks. 22(3), 200–212 (2009). https://doi.org/10.1016/j.neunet.2009.03.012. ID - ref17 ER - TY - STD TI - AH Sayeed, A Tarighat, N Khajehnouri, Network-Based Wireless Location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process.Mag. 22(4), 24–40 (2005). https://doi.org/10.1109/MSP.2005.1458275. ID - ref18 ER - TY - STD TI - MT Ozden, Adaptive reconfigurable V-BLAST type channel equalizer for cognitive MIMO-OFDM radios. EURASIP J. Adv. Signal Processing. 2015:8: (2015). https://doi.org/10.1186/s13634-015-0199-9. ID - ref19 ER - TY - STD TI - MT Ozden, Adaptive multichannel sequential lattice prediction filtering method for ARMA spectrum estimation in subbands. EURASIP J. Adv. Signal Process. 2013:9: (2013). https://doi.org/10.1186/1687-6180-2013-9. ID - ref20 ER - TY - STD TI - MT Ozden, Adaptive multichannel sequential lattice prediction filtering method for range estimation in cognitive radios. 2014 IEEE/ION Position, Locat. Navig. Symp. (PLANS), 426–433 (2014). https://doi.org/10.1109/PLANS.2014.6851400. ID - ref21 ER - TY - STD TI - MT Ozden, Joint spectrum and AOA estimation for cognitive radios using adaptive multichannel sequential lattice prediction filtering method. 2nd IET International Conference on Intelligent Signal Processing 2015 (ISP), (London, 2015). https://doi.org/10.1049/cp.2015.1777. ID - ref22 ER - TY - STD TI - JG Andrews, S Buzzi, W Choi, SV Hanly, A Lozano, ACK Soong, JC Zhang, What will 5G be?IEEE J.Sel. Areas in Commun. 32(6), 1065–1082 (2014). https://doi.org/10.1109/JSAC.2014.2328098. ID - ref23 ER - TY - STD TI - F Boccardi, RW Heath, A Lozano, TL Marzetta, P Popovski, Five disruptive technology directions for 5G. IEEE Comm. Mag. 52(2), 75–80 (2014). https://doi.org/10.1109/MCOM.2014.6736746. ID - ref24 ER - TY - STD TI - S Sasipriya, R Vigneshram, An overview of cognitive radio in 5G wireless communications. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), (Chennai India, 2016). https://doi.org/10.1109/ICCIC.2016.7919725. ID - ref25 ER - TY - STD TI - CX Wang, F Haider, X Gao, XH You, Y Yang, D Yang, D Yuan, HM Aggoune, H Haas, S Fletcher, E Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Comm. Mag.52(2), 122–130 (2014). https://doi.org/10.1109/MCOM.2014.6736752. ID - ref26 ER - TY - STD TI - L Li, Y Xia, B Jelfs, J Cao, DP Mandic, Modelling of brain consciousness based on collaborative adaptive filters. Neurocomputing. 76(1), 36–43 (2012). https://doi.org/10.1016/j.neucom.2011.05.038. ID - ref27 ER - TY - STD TI - J Qiu, Y Wei, HR Karimi, H Gao, Reliable control of discrete-time piecewise-affine time-delay systems via output feedback. IEEE Trans.Rel.67(1), 79–91 (2018). https://doi.org/10.1109/TR.2017.2749242. ID - ref28 ER - TY - STD TI - J Qiu, Y Wei, L Wu, A novel approach to reliable control of piecewise affine systems with actuator faults. IEEE Trans. Circuits Syst. II, Exp. Briefs. 64(8), 957–961 (2017). https://doi.org/10.1109/TCSII.2016.2629663. ID - ref29 ER - TY - STD TI - J Arenas-Garcia, LA Azpicueta-Ruiz, MTM Silva, VH Nascimento, AH Sayed, Combinations of adaptive filters: performance and convergence properties. IEEE Signal Process. Mag. 33(1), 120–140 (2016). https://doi.org/10.1109/MSP.2015.2481746. ID - ref30 ER - TY - STD TI - MTM Silva, VH Nascimento, Improving the tracking capability of adaptive filters via convex combination. IEEE Trans. Signal Process. 56(7), 3137–3149 (2008). https://doi.org/10.1109/TSP.2008.919105. ID - ref31 ER - TY - STD TI - J Arenas-Garcia, AR Figueiras-Vidal, Adaptive combination of proportionate filters for sparse echo cancellation. IEEE Trans. Audio, Speech, Language Process.17(6), 1087–1098 (2009). https://doi.org/10.1109/TASL.2009.2019925. ID - ref32 ER - TY - STD TI - J Ni, F Li, Adaptive combination of subband adaptive filters for acoustic echo cancellation. IEEE Trans. Consum. Electron. 56(3), 1549–1555 (2010). https://doi.org/10.1109/TCE.2010.5606296. ID - ref33 ER - TY - STD TI - FS Chaves, JMT Romano, M Abbas-Turki, H Abou-Kandil, A convex combination of H2 and H∞ filters for space-time adaptive equalization. 2011 IEEE Stat. Signal. Process Workshop (SSP), 717–720 (2011). Nice/France. https://doi.org/10.1109/SSP.2011.5967803. ID - ref34 ER - TY - STD TI - B Jelfs, S Javidi, P Vayanos, D Mandic, Characterisation of signal modality: exploiting signal nonlinearity in machine learning and signal processing. J. Sign. Process. Syst. 61:105: (2010). https://doi.org/10.1007/s11265-009-0358-z. ID - ref35 ER - TY - STD TI - LA Azpicueta-Ruiz, M Zeller, AR Figueiras-Vidal, J Arenas-Garcia, W Kellermann, Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation. IEEE Trans. Audio, Speech, Language Process.19(1), 97–110 (2011). https://doi.org/10.1109/TASL.2010.2045185. ID - ref36 ER - TY - STD TI - NV George, A Gonzalez, Convex combination of nonlinear adaptive filters for active noise control. Appl. Acoust. 76:, 157–161 (2014). https://doi.org/10.1016/j.apacoust.2013.08.005. ID - ref37 ER - TY - STD TI - LFO Chamon, CG Lopes, Combination of adaptive filters for relative navigation. 2011 19th European Signal Processing Conference, (Barcelona/Spain, 2011). https://ieeexplore.ieee.org/document/7074291/. UR - https://ieeexplore.ieee.org/document/7074291/ ID - ref38 ER - TY - STD TI - HF Ferro, LFO Chamon, CG Lopes, FIR-IIR filters hybrid combination. Electron. Lett. 50(7), 501–503 (2014). https://doi.org/10.1049/el.2014.0248. ID - ref39 ER - TY - STD TI - G Gui, L Xu, Affine combination of two adaptive sparse filters for estimating large scale MIMO channels. 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), (Siem Reap/Cambodia, 2014). https://doi.org/10.1109/APSIPA.2014.7041545. ID - ref40 ER - TY - STD TI - W Gao, Y Yan, L Zhang, Q Zhang, Combinations of multiple kernel adaptive filters. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), vol. 2017, (Xiamen/China. https://doi.org/10.1109/ICSPCC.2017.8242551. ID - ref41 ER - TY - STD TI - R Claser, VH Nascimento, Low-complexity approximation to the Kalman filter using convex combinations of adaptive filters from different families. 2017 25th European Signal Processing Conference (EUSIPCO), 2630–2633 (2017). https://doi.org/10.23919/EUSIPCO.2017.8081687. ID - ref42 ER - TY - STD TI - F Huang, J Zhang, Y Pang, A novel combination scheme of proportionate. Sig. Process. 143:, 222–231 (2018). https://doi.org/10.1016/j.sigpro.2017.09.013. ID - ref43 ER - TY - STD TI - VH Nascimento, MTM Silva, R Candido, J Arenas-Garcia, A transient analysis for the convex combination of adaptive filters. IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff/UK, 2009). https://doi.org/10.1109/SSP.2009.5278642. ID - ref44 ER - TY - STD TI - NJ Bershad, JCM Bermudez, JY Tourneret, An affine combination of two LMS adaptive filters-transient mean-square analysis. IEEE Trans. Signal Process. 56(5), 1853–1864 (2008). https://doi.org/10.1109/TSP.2007.911486. ID - ref45 ER - TY - STD TI - AT Erdogan, SS Kozat, AC Singer, Comparison of convex combination and affine combination of adaptive filters. IEEE Int. Conf. Acoustics, Speech and Signal Process.(ICASSP)., 3089–3092 (2009). https://doi.org/10.1109/ICASSP.2009.4960277. ID - ref46 ER - TY - STD TI - R Candido, MTM Silva, VH Nascimento, Transient and steady-state analysis of the affine combination of two adaptive filters. IEEE Trans. Signal Process. 58(8), 4064–4078 (2010). https://doi.org/10.1109/TSP.2010.2048210. ID - ref47 ER - TY - STD TI - J Arenas-Garcia, M Martinez-Ramon, A Navia-Vazquez, AR Figueiras-Vidal, Plant identification via adaptive combination of transversal filters. Sig. Process. 86(9), 2430–2438 (2006). https://doi.org/10.1016/j.sigpro.2005.11.008. ID - ref48 ER - TY - STD TI - J Arenas-Garcia, V Gomez-Verdejo, AR Figueiras-Vidal, New algorithms for improved adaptive convex combination of LMS transversal filters. IEEE Trans. Instrum. Meas.54(6), 2239–2249 (2005). https://doi.org/10.1109/TIM.2005.858823. ID - ref49 ER - TY - STD TI - F Ling, JG Proakis, A generalized multichannel least squares lattice algorithm based on sequential processing stages. IEEE Trans. Acoust., Speech, Signal Process. 32(2), 381–389 (1984). https://doi.org/10.1109/TASSP.1984.1164325. ID - ref50 ER - TY - STD TI - J Ma, GY Li, BH Juang, Signal processing in cognitive radio. Proc. IEEE. 97(5), 805–823 (2009). https://doi.org/10.1109/JPROC.2009.2015707. ID - ref51 ER - TY - STD TI - AF Molisch, LJ Greenstein, M Shafi, Propogation issues for cognitive radio. Proc.IEEE. 97(5), 787–804 (2009). https://doi.org/10.1109/JPROC.2009.2015704. ID - ref52 ER - TY - BOOK AU - Molisch, A. F. PY - 2011 DA - 2011// TI - Wireless communications, 2/E PB - John Wiley and Sons CY - Chichester ID - Molisch2011 ER - TY - BOOK AU - Haykin, S. PY - 2002 DA - 2002// TI - Adaptive filter theory, 4/E PB - Prentice-Hall CY - Upper Saddle River, NJ ID - Haykin2002 ER - TY - STD TI - O Macchi, Optimization of adaptive identification for time-varying filters. IEEE Trans. Autom. Control. 31(3), 283–287 (1986). https://doi.org/10.1109/TAC.1986.1104239. ID - ref55 ER - TY - STD TI - GV Moustakides, Study of the transient phase of the forgetting factor RLS. IEEE Trans. Signal Process. 45(10), 2468–2358 (1997). https://doi.org/10.1109/78.640712. ID - ref56 ER - TY - STD TI - V Lomi, D Tonetto, L Vangelista, False alarm probability-based estimation of multipath channel length. IEEE Trans. Commun.51(9), 1432–1434 (2003). https://doi.org/10.1109/TCOMM.2003.816974. ID - ref57 ER - TY - STD TI - F Ling, D Manolakis, JG Proakis, Numerically robust least-squares lattice-ladder algorithms with direct updating of the reflection coefficients. IEEE Trans. Acoust., Speech, Signal Process. 34(4), 837–845 (1986). https://doi.org/10.1109/TASSP.1986.1164878. ID - ref58 ER - TY - STD TI - F Ling, D Manolakis, JG Proakis, A recursive modified Gram-Schmidt algorithm for least-squares estimation. IEEE Trans. Acoust., Speech, Signal Process. 34(4), 829–835 (1986). https://doi.org/10.1109/TASSP.1986.1164877. ID - ref59 ER -