Stage inputs $$\gamma ^{f}_{\ell -1,1}(n)=\gamma _{\ell -1}(n-1), \gamma ^{b}_{\ell -1,1}(n)=\gamma _{\ell -1}(n)$$ (T.3.1) $$r^{b}_{\ell -1,k}(-1)=r^{f}_{\ell -1,k}(-1)=\delta, (k=1,\ldots,M)$$ (T.3.2) $$\Delta ^{e}_{\ell,k}(-1)=\Delta ^{f}_{\ell,k}(-1)=\Delta ^{b}_{\ell,k}(-1)= \Delta ^{eq}_{\ell }(0)=0.0, (k=1,\ldots,M)$$ (T.3.3) For k= 1,…, M Computations at SOPs $$r^{b}_{\ell -1,k}(n) = \lambda _{k} \ r^{b}_{\ell -1,k}(n-1) + \gamma ^{b}_{\ell -1,k}(n) \ \mid b_{\ell -1}^{k}(n) \mid ^{2}$$ (T.3.4) $$\gamma ^{b}_{\ell -1,k+1}(n)=\gamma ^{b}_{\ell -1,k}(n) - \mid \gamma ^{b}_{\ell -1,k}(n) \mid ^{2} \mid b_{\ell -1}^{k}(n)\mid ^{2}/r^{b}_{\ell -1,k}(n)$$ (T.3.5) $$r^{f}_{\ell -1,k}(n) = \lambda _{k} \ r^{f}_{\ell -1,k}(n-1) + \gamma ^{f}_{\ell -1,k}(n) \ \mid f_{\ell -1}^{k}(n) \mid ^{2}$$ (T.3.6) $$\gamma ^{f}_{\ell -1,k+1}(n)=\gamma ^{f}_{\ell -1,k}(n) - \mid \gamma ^{f}_{\ell -1,k}(n)\mid ^{2} \mid f_{\ell -1}^{k}(n) \mid ^{2}/r^{f}_{\ell -1,k}(n)$$ (T.3.7) Joint process estimation (ROP) $$e_{\ell }^{k}(n)=e_{\ell -1}^{k}(n) - \Delta ^{e^{*}}_{\ell,k}(n-1) \ b_{\ell -1}^{k}(n)$$ (T.3.8) $$\Delta ^{e}_{\ell,k}(n)= \alpha (\Delta ^{e}_{\ell,k}(n-1) + \gamma ^{b}_{\ell -1,k}(n) \ e^{k^{\ast }}_{\ell }(n) b^{k}_{\ell -1}(n)/r^{b}_{\ell -1,k}(n)) + (1-\alpha) \Delta ^{eq}_{\ell }(n-1)$$ (T.3.9) Combination processing (type-1 processor) $$e_{\ell }^{eq}(n) = e_{\ell }^{eq}(n) + v^{k}(n) \ e_{\ell }^{k}(n)$$ (T.3.10) $$\Delta ^{eq}_{\ell }(n) = \Delta ^{eq}_{\ell }(n) + v^{k}(n) \ \Delta ^{e}_{\ell,k}(n)$$ (T.3.11) Forward error prediction (ROP) $$f_{\ell }^{k}(n)=f_{\ell -1}^{k}(n) - \Delta ^{f^{*}}_{\ell,k}(n-1) \ b_{\ell -1}^{k}(n-1)$$ (T.3.12) $$\Delta ^{f}_{\ell,k}(n)= \Delta ^{f}_{\ell,k}(n-1) + \gamma ^{b}_{\ell -1,k}(n-1) \ f^{k^{\ast }}_{\ell }(n) b^{k}_{\ell -1}(n-1)/r^{b}_{\ell -1,k}(n-1)$$ (T.3.13) Backward error prediction (ROP) $$b^{k}_{\ell }(n)=b_{\ell -1}^{k}(i-1) - \Delta ^{b^{*}}_{\ell,k}(n-1) \ f_{\ell -1}^{k}(n)$$ (T.3.14) $$\Delta ^{b}_{\ell,k}(n)= \Delta ^{b}_{\ell,k}(n-1) + \gamma ^{f}_{\ell -1,k}(n) \ b^{k^{\ast }}_{\ell }(n) f^{k}_{\ell -1}(n)/r^{f}_{\ell -1,k}(n)$$ (T.3.15) End Combination processing (type-2 processor) For k=1,…,M $$a^{k}(n+1)=a^{k}(n)-\mu _{a} \ e^{eq}_{N}(n) \ \left (e_{N}^{k}(n) - e^{eq}_{N}(n)\right) \ v^{k}(n) + \rho \ \left (a^{k}(n)-a^{k}(n-1)\right)$$ (T.3.16) $$\beta (n+1)= \beta (n+1) + e^{a^{k}(n+1)}$$ (T.3.17) $$v^{k}(n+1)= \frac {e^{a^{k}(n+1)}}{\beta (n+1)}$$ (T.3.18) End Stage outputs $$\gamma _{\ell }(n)=\gamma ^{b}_{\ell -1,M+1}(n)$$ (T.3.19)